
Most user interfaces can be designed using the
usual GUI elements like buttons, entry fields and
labels. But some tasks go beyond the limits of these
widgets. Whether you want to illustrate a factory's
material flow, conjure up the romance of steam
trains or just want to give your program an interface
that is a bit out of the ordinary, look no further than
the Canvas widget.

Canvas offers you a virtual canvas that allows
you to display objects such as lines, surfaces,
bitmaps and fonts. However, possibilities are not
limited to display. Objects can also be manipulated,
either in a pre-programmed process or interactively
by the user. Canvas can also export the finished
masterpiece as postscript. Due to its functional
range, it forms the basis of many drawing programs
(Impress for example).

The source text in Listing 1 demonstrates some
of the Canvas widget's features. As in the last
instalment of Tcl, we're dealing with the
representation and manipulation of type 1 fonts
(postscript fonts). The screenshot in Figure 1 is taken
from the detailed version of the program, which
draws an exclamation mark consisting of an upright
bar (actually a polygon) and a spherical base.

Objects

Firstly, two arrows are going to illustrate the
1000x1000 point design space of type 1 characters.
The coordinate axes are pointing upwards and to the
right. However, the Canvas widget uses its own
coordinate system that cannot be changed. In this, the
axes point downwards and to the right, as in X11. It is
the programmer's job to create objects in Canvas with
coordinates that have been converted – or can convert
them using canvasName scale Element.

For the first two lines of Listing 1 the y
coordinate's sign is simply reversed. A negative
scaling factor along the y axis has the same effect
for the remaining elements.

New Canvas objects are always created in the
same way. The syntax is canvasName create Type
Coordinates Attributes. Table 1 contains a listing of
important attributes.

If the commands from the listing are entered
one at a time (such as in Tkcon), not much of the
two lines is visible at first. The Canvas widget must
first be told which region to display. This is done
with the -scrollregion option. Considering the size
and resolution of today's monitors, the display
could be smaller. This is achieved by simply scaling
down the arrows (in our example by a factor of 0.4).

KNOW HOW TCL/TK

1 LINUX MAGAZINE 12 · 2001

Tcl/Tk's universal tool

for 2D graphics is the Canvas

widget. It can represent,

manipulate and animate simple

and complex graphic objects

and enable mouse access.

Universal tool

A WIDE
CANVAS

CARSTEN ZERBST

Table 1: Attributes of Canvas Objects
Tags List of tags
-fill Colour colour of lines and surfaces
-outline Colour colour of outlines
-width Width width of lines and outlines
-dash Pattern line pattern, e.g. "-.."
-stipple Pattern bitmap for shading, e.g. gray25
-arrow Where arrow point (none, first, last, both)
-smooth Boolean splines instead of polygon

Manipulated objects

Each manipulation must specify which object it is
referring to. This can be done in two ways: using IDs
or tags (markings). Each object is assigned a unique ID
when it is created. This could be stored for later use,
but it's easier to use tags. Each object can contain one
or more tags, by which it can be addressed instead of
by its ID. Two tags always exist – all for all objects and
current for the most recent object.

After scaling down, the arrows should be
completely visible. However, the scroll region still
has to be adapted to the new dimensions. Instead
of specifying the area directly as before, we will use
the command bbox. It determines the region within
Canvas that is occupied by objects.

We want to create an exclamation mark as a
simple outline. The widget itself can deal with scaling
and reflection in the y direction. Like the arrows
before, the bar is scaled down as soon as it is created.
A negative scaling factor along the y axis takes care of
reflection. Scaling only ever applies to coordinates –
line width or text size are not affected. In our example,
one corner of the bar still contains a little square.

Spherical objects

After the bar, it's the turn of the base. It does not
simply consist of a circle, but has a more complex
shape formed of several curves. In order to be able
to represent curves instead of straight lines, the
option -smooth true exists for lines and polygons.
The display uses splines, which smooth the
transition between two consecutive line segments.
To introduce a bend into a spline curve, the bending
point must be contained twice in the list of
coordinates. Type 1 fonts use bezier curves, defined

KNOW HOWTCL/TK

12 · 2001 LINUX MAGAZINE 2

Figure 1: The complete example draws an
exclamation mark with several check points and
displays the current mouse position

Listing 1: Canvas widget with some objects
canvas .c -width 400 -height 500 -bg white \
-xscrollcommand [list .hscroll set] \
-yscrollcommand [list .vscroll set]
scrollbar .hscroll -orient horizontal -command [list .c xview]
scrollbar .vscroll -orient vertical -command [list .c yview]

grid .c .vscroll -sticky news
grid .hscroll -sticky ew
grid columnconfigure . 0 -weight 1
grid rowconfigure . 0 -weight 1

Two lines with arrow points
.c create line -100 0 1100 0 -fill red -arrow last -tags coord
.c create line 0 400 0 -1100 -fill red -arrow last -tags coord
.c configure -scrollregion {-100 -1100 400 1100}

Scaling
set scale 0.4
.c scale coord 0 0 $scale $scale
.c configure -scrollregion [.c bbox all]

Bar
set item [.c create polygon 440 800 560 800 530 270 470 270 \
-fill seagreen2 -outline seagreen4 -tags outl1]
.c scale $item 0 0 $scale -$scale

A node
.c create rectangle 430 790 450 810 -tags {node outl1} \
-fill seagreen2 -outline seagreen4
.c scale node 0 0 $scale -$scale

A curve
set item [.c create line 400 60 400 100 450 140 500 140 \
-smooth true -fill seagreen4]
.c scale $item 0 0 $scale -$scale

Some text
.c create text 100 -100 -text "Print with ̂ p"

Output of coordinates
proc coords {x y} {
set x [expr {[.c canvasx $x]/$::scale}]
set y [expr {-[.c canvasy $y]/$::scale}]
puts stdout "x: $x\ty: $y"
}
bind .c <Motion> {coords %x %y}

Selection
proc deselect {} {
.c itemconfigure outl1 -outline green4 -fill green2
.c bind outl1 <Button-1> select
}
proc select {} {
.c itemconfigure outl1 -fill firebrick1 -outline firebrick4
.c bind outl1 <Button-1> deselect
}
.c bind outl1 <Button-1> select

Printing the visible region
proc printing {} {
puts stderr "Print postscript canvas.ps"
set fd [open canvas.ps w]
puts $fd [.c postscript]
close $fd
}
bind . <Control-p> printing

by two nodes and two check points. The example
for the first segment only uses four points.

Work with Canvas often requires the mouse
position. The location within the system of screen
coordinates is of less interest than the Canvas position.
The commands canvasx and canvasy convert the
position, taking the current scroll position into account,
but not scaling. The coords function divides the
coordinates by the scaling factor and then outputs the
converted coordinates on the command line.

Interactive objects

To be able to select or move objects with the
mouse, they must first react to it. The command
canvasName bind TagOrID Event Command is used
to instruct one or more Canvas objects to react to a
specified event. In our example, when you click on
the bar, it changes colour.

Lastly, we want to output the whole thing as
postscript. Using canvasName postscript, this is no
problem either. If no printing area is specified, the
output only contains the visible Canvas region.
Otherwise, the required section has to be specified.
When using texts in Canvas, it is advisable to
remember that there are often more fonts installed
than the printer will recognise. Either limit yourself
to the 35 standard fonts or embed the additional
fonts in the postscript file at a later date.

How many dimensions?

The Canvas widget offers a lot of functionality for
2D graphics, either purely for display purposes, for
user interfaces or for creating graphics with a lot of
interactions. Help is also available. For instance,
Pstoedit can prepare many postscript files so that
they can be represented with Canvas. Gnuplot can
output its graphics directly in Canvas widget format.

If, however, you're thinking more in terms of 3D
for graphics, Canvas won’t make you happy.
Depending on your exact requirements, the
OpenGL widget Togl may be better suited, or VTK
for processing and representing scientific data, or
the game engine Nebula Device.

After this rather picture-heavy instalment, the
next issue of Tcl will describe how to design a really
user-friendly Tcl/Tk application. ■

The author
Carsten Zerbst is a member of

staff at Hamburg-Harburg
Technical University. Apart from

researching service integration on
board ships, he investigates

Tcl in all its forms.

KNOW HOW TCL/TK

3 LINUX MAGAZINE 12 · 2001

News from the Tcl world
Jeffrey Hobbes has published a new version of Tkcon, a tool for every Tcl
developer. It would be unfair on Tkcon to describe it simply as a substitute
for the normal Tcl command line interface. Tkcon offers the same usability
when working with Tcl that you will be accustomed to from Tcsh or Bash.
Tkcon automatically completes file names as well as Tcl commands and
variables. In addition, it has other features that you will be familiar with
from fully-fledged editors, such as syntax highlighting and display of
bracket levels. You can browse through name spaces with ease, extensions
installed in the system can be loaded at a mouse-click, and much more
besides. Tkcon makes working with Tcl even more fun.

Tkcon as universal tool
Tkcon not only offers valuable support when trying out new things but also
helps with debugging. It is even ideally suited to writing applications, as it
can display individual variables or load improved source text at runtime.

The Tcl extension Snack is undergoing quite a bit of development. This is
nothing to do with fatty foods rich in carbohydrates, but rather with sound.
Language researchers at the Royal College of Stockholm have created a tool
that can deal with many sound processing tasks. Snack can record and play
sounds, edit and distort them and carry out further processing. If you're
planning on dissecting your MP3 files, you may as well do it with Snack.
Wavesurfer (see Figure 2), a handy program for editing audio files, uses Snack.
The way to your own MP3 player has never been as easy as with this extension.

Reading matter
If you'd like to see what others are getting up to with Tcl/Tk, we'd
recommend a look at the pages of the 2nd European Tcl/Tk User Meeting.
There is a wide range of papers, the focus this year was on the use of Tcl on
the Web. Even though not nearly as much fuss is made about Tcl as about
some of its alternatives, Tcl is working behind the scenes of AOLserver and
Vignette's Story server, both of which are hardly the smallest in their field.
Fringe areas such as the coupling of COBOL with Tcl are examined, along
with the application of Tcl for game control or as a testing tool.

Figure 2: Wavesurfer
not only plays
and processes

audio files, but also
displays wave

forms graphically.
This picture shows

a WAV file

Info

Tkcon: http://tkcon.sourceforge.net
Snack: http://www.speech.kth.se/snack/
2nd European Tcl/Tk User Meeting:
http://www.tu-harburg.de/skf/tcltk
AOLserver: http://aolserver.com
Wiggles: http://www.wiggles.com
Animated steam loco: http://mini.net/cgi-
bin/wikit/1329.html
Xtcc: http://www.tu-
harburg.de/skf/tcltk/papers2000/xtcc.pdf
Impress:
http://www.ntlug.org/~ccox/impress/index.html
Pstoedit:
http://www.geocities.com/SiliconValley/Networ
k/1958/pstoedit/
Togl: http://sourceforge.net/projects/togl/
VTK: http://www.kitware.com
Nebula Device: http://www.radonlabs.de

■

