
KNOW HOW INSTALLATION

46 LINUX MAGAZINE 13 · 2001

Sometimes we need to get new programs for the Linux system, but installing

them can be a chore. This month we look at installation from the source.

Installing from source code
The idea of installing from source code might seem
daunting – all those nasty curly brackets and stuff.
Isn’t this option out of the question for the non-
programmers amongst us? No, certainly not!
Installing from source usually does not require you to
modify, understand, or even look at the actual source
code at all. However, since most of the software is
written in C or C++, it does require that you install
the C/C++ development tools on your system.

Most of the established open-source sites use a
format known as a tarball, (also known as a
compressed tar archive) to package source code for
distribution. These files usually have names ending
in .tar.gz. As an example, we’re going to take a look
at installing the latest version of the Apache Web
server from source. The process is much the same
for other packages.

As I’m writing this article, the most recent version
of Apache I can find as an RPM is 1.3.20; however I
know that there’s a beta version of 2.0 available.
We’ll try the obvious place – www.apache.org. Sure

enough, after a couple of minutes poking around I
find a listing of files available for download (see
Figure 1). The tarball I need is called httpd-2_0_16-
beta.tar.gz. The file below it in the list is a PGP
signature for the file, so I can be sure it’s authentic. I
decide to download the tarball to my home
directory, /home/chris.

The next thing to do is to uncompress and
unpack the archive. With the right switches, tar can
do both of these in one step:

$ cd /home/chris

$ tar xzvf httpd-2_0_16-beta.tar.gz

You’ll see a long list of the files as tar extracts them
from the archive and puts them into the
subdirectory httpd-2_0_16. If you’ll look in that
directory you’ll see some documentation files with
names like INSTALL and README, which you’ll
probably want to look at.

Now it’s time to build the software. Not many
years ago this typically involved quite a bit of fiddling
around to customise the build process to your
platform, following instructions in the INSTALL file
which said lots of intimidating things like “if you
don’t have the library libfoobar.o, add the flag -
DNOFOOBAR to the CFLAGS macro definition in the
makefile”. Nowadays this customisation is mostly
automatic thanks to an amazing tool called autoconf
from the Free Software Foundation. Autoconf is
used by the package developer to create a script
called configure which is included in the tarball. The
configure script performs lots of tests on your system
and builds a makefile depending on what it finds. By
the way, I do not recommend actually looking at the
configure script; like most automatically generated
code, it’s not a pretty sight.

If configure finds that necessary components are
absent from your system, it will tell you what’s
missing and abort. In any event, you’ll see a long list
of all the tests that the configure script is making
scroll by. If all goes well, you end up with a makefile
to control the build of the software.

Installing Open-Source Software on Linux

GOING TO
THE SOURCE

CHRIS BROWN

Figure 1: Finding files

KNOW HOWINSTALLATION

13 · 2001 LINUX MAGAZINE 47

There’s not space enough here to talk about
makefiles and the make command in depth.
Suffice for now to say that the makefile specifies
what files need to be created, which files they
need to be created from, and what commands are
needed to do the job. The make program
interprets the makefile and runs the necessary
commands. Usually all you need to do is to run
make with no arguments. This will compile and
link the programs that make up the package, and
may take some time depending on the complexity
of the package and the speed of your computer.
Time to go and top up the bird feeders with
peanuts perhaps. If configure ran successfully, the
make is unlikely to fail.

Now you have the compiled version of the
package. Note that everything so far has been
contained within the directory you did the build in –
in our example, that’s /home/chris/httpd-2_0_16. If I
were to empty and remove this directory, and delete
the tarball from my home directory, I would remove
all traces of the package.

The final step is to install all the pieces into the
correct places in your system. This might be as
simple as putting the program into /usr/bin for
example, but will typically also install
documentation and maybe some configuration
files. Because this operation updates system

directories, it must be run as root. This operation is
also automated via entries in the makefile and the
command is simply ‘make install’.

In most cases, that’s all you’ll need to do. It takes
longer to explain than to actually do. In summary,
the sequence of commands is usually:

<download the tarball to /somewhere >

$ cd /somewhere

$ tar xzvf package_name.tar.gz

$ cd package_name

$./configure

$ make

su to root ...

make install

Once the package is installed you can recover some
disk space by deleting the directory you unpacked
the tarball into – for example:

$ rm -rf /somewhere/package_name

Installing new software onto Linux isn’t hard and
doesn’t require any programming skills. It’s an
excellent way of expanding your system and
keeping what you have up to date. And of course,
it’s free!
Happy hunting! ■

