
The most important innovations in Python 2.1

PROGRAMMING PYTHON

54 LINUX MAGAZINE 13 · 2001

Object persistence in Python

PYTHON
POWER

ANDREAS JUNG

Nested scopes

Until Python 2.0 there were three name spaces, which are searched
for variables in the following order: local name space, module name
space and built-in name space. This separation is not intuitive if you
look at nested functions:

def f():
...
def g(value):

...
return g(value-1)

Invocation of function g() in the return statement will cause a name
error exception, because g has not been defined in any of the three
name spaces. Python 2.1 removes this shortcoming and allows the
nesting of name spaces through importing the new nested_scopes
module.

__future__ statements

New features are introduced with every version of Python. This may
lead to a break in compatibility with existing applications. In order to
alleviate this problem, new aspects that will become standard features
in Python 2.2 can be linked using a __future__ import statement.
Nested scopes will become a standard feature of Python from version
2.2 onwards. Although their implementation is already finished they
have not yet been enabled in Python 2.1. To be able to use them
anyway, they need to be linked and enabled with

from __future__ import nested_scopes

Warning framework

Over the years many modules have accumulated that are no longer
supported, are obsolete or have been replaced by newer ones with
improved functionality. It is difficult for developers to remove modules

In a new series on Python, Linux Magazine will

be reporting on current developments

every other month and introducing the

concepts that make Python unique. Our first

topic is object persistence.

Welcome to Linux Magazine’s new
Python series. We will be looking at

topics on all aspects of Python, for
beginners as well as advanced users. This

includes reports on current Python developments
and solutions, but also basic articles on certain
subjects. The first article deals with the
permanent storage of objects. But first a brief
overview of Python...

Python is a scripting language that was
developed at the beginning of the 90s by Guido

van Rossum and has since evolved into a
universally employed programming language.
Today, Python is the most important and most
widely used scripting language apart from Perl. As
this description implies, Python is an interpreted
language, compilation of Python programs takes
place at runtime.

A magazine article cannot hope to give a full
introduction to Python, however, we will discuss
some of Python’s concepts and advantages. A
detailed introduction can be found in the Python

PROGRAMMINGPYTHON

13 · 2001 LINUX MAGAZINE 55

tutorial at http://www.python.org/doc, but also in
the new Open Source book Dive Into Python
(http://www.diveintopython.org).

Python overview

We’d briefly like to mention a few of Python’s
advantages and distinctive features:

Quick to learn and to easy read: Python’s syntax is
simple and easy to understand, and its functionality
is clear. Unlike Perl, even very large projects can be
created, maintained and still be intelligible some
time later. Its language range is orthogonal, as a
rule there is no duplication of functionality. Loops
are realised as for or while constructs, repeat or
do..until loops are unnecessary.

Modular: related functionalities (for example
sockets or graphical options) have been combined
into modules and are imported when required. In
the spirit of code reuse, modules can be used by
different applications.

Interactive: Python has an interactive mode,
which makes familiarisation very easy, particularly
for beginners.

Compact: Compared to compiled languages like
C or C++ Python programs are very compact.
Python’s data types, such as dictionaries, lists and
tuples, allow most complex operations to fit onto
one line. Programs are structured into codeblocks
by indentation of the source code. The bracketing
familiar from C is therefore redundant.

Object-oriented: In contrast to other
programming languages Python was designed
from the outset to be object-oriented rather than
being extended with object-oriented concepts
later on, like Perl, for example. This unified
concept distinguishes Python significantly from
its competitors.

Python’s increasing popularity has one main

reason: the clear and simple language structure
makes it easily accessible. In the meantime, Python
is used by schools and universities to teach
programming skills.

However, Python is not only of interest to
beginners, it is the Swiss Army knife of
programming. It is used in areas as diverse as Web
applications, string processing, administrative and
other applications, numeric calculations and
controlling complex production environments in
factories. Python inherently offers many useful
concepts that are not found in other languages, for
example object persistence.

What is object persistence?

In every object-oriented programming language
objects contain methods and attributes. For many
applications it is desirable to deposit an object
permanently on a storage medium in order to reuse
it after restarting the program. Following a program
termination the latest stored state of the object can
then be accessed.

It is always possible to write application-
dependant code for the export of important data,
but each modification of the object also requires the
export functionality to be amended accordingly.
What is required at this point is transparent object
persistence, that is, a mechanism that allows objects
to be stored permanently without additional code.
This should happen without necessitating the
programmer or the application to have special
knowledge about persistence.

Python persistence

For a long time Python has contained pickle and
cPickle, with which objects can be serialised.
Objects are serialised into character streams, which

Tuples: A tuple is a number of
values separated by commas

without running the risk that applications won’t work with later versions.
The warning framework makes it possible to issue version-

dependant warnings that a module will no longer be contained in the
next version or a functionality will be changed or removed. For
example, when importing the regex module, Python 2.1 issues
the warning:

> import regex
__main__:1: Deprecation Warning: the regex module is
deprecated; please use
the re module

Users then have one release cycle to convert their software to the
newer module re for regular expressions.

Function attributes

In Python 2.1 attributes can be assigned to functions:

def func():
....

func.author = “Holger Müller”
func.security = 1

All attributes are stored in the function’s dictionary __dict__. Until
version 2.0 it was only possible to hide additional information in the
doc string, which could be read through f.__doc__.

New installation mechanism

From version 2.1 the installation is carried out using the distutils
package, which is the standard installation tool for Python modules.

It is therefore no longer necessary to go to the trouble of
configuring the modules manually, as was the case in older versions.
The installation script checks automatically which modules it can
compile (similar to configure), based on the headers and libraries, and
then builds them automatically.

PROGRAMMING PYTHON

56 LINUX MAGAZINE 13 · 2001

can then be in files. This process is called pickling;
an object is conserved, as it were, in order to be
reused later. Alternatively, Python can read in such
a serialized object and convert it back into an
object (unpickling).

Both modules are identical in their functionality:
cPickle is the C reimplementation of the pickle
module written in Python, and is always preferable
for efficiency reasons.

In the example in Listing 1 an object with the two
attributes num=212 and txt=’Python is cool’ is
created. The object is stored permanently in an
internal format in instClass.p by invoking
cPickle.dump(). The subsequent call cPickle.load()
loads the files and generates a new instance of
myClass, which has the same attributes as the
original object.

This approach is generally possible for every
Python object, however, there are some
exceptions. For example, file objects or sockets
cannot be serialized, which would not be sensible
anyway. Pickling allows persistent storage of any
object – even ones with multiple inheritance – but
the programmer still has to implement parts of the
code himself.

Persistence in Python
using the ZODB
Based on the pickle mechanism, the Zope Object
Data Base (ZODB for short) was created during the
development of the Zope application server. It frees
the developer from the burden of implementation
as well. Its use is relatively simple: to the developer
the ZODB appears as a mapping object which is
addressed in the same way as a Python dictionary:

zodb[`instClass’] = instClass

The object is bound to the key ̀ instClass’ in the
ZODB and stored. In the same way objects can easily
be retrieved from the ZODB:

instClass = zodb[`instClass’]

That looks very elegant, and it is. But before we get
to that point, ZODB has to be installed first. ZODB is
not restricted to a specific medium for storing
objects. Normally it deposits objects in a file within
the file system, however, adapters for databases
such as Oracle or BerkleyDB exist. The storage
medium is transparent to the application. Only
when opening the ZODB does the medium have to
be specified, that is, if applicable, the underlying
actual database layer.

Installation of the ZODB

The ZODB is integrated into Zope and can be used if
Zope has already been installed. If you don’t need
Zope, there is a stand-alone version of the ZODB
which is being maintained by A M Kuchling.

After unpacking the archive the installation is
performed using the distutils tool (contained in
Python 2.0/2.1, for Python 1.5.x the distutils have to
be installed separately):

python setup.py install

That should automatically compile and install all
ZODB sources and modules. It is advisable to use the
current version of Python, 2.1.

Using the ZODB

How to open the ZODB when using a file as the
storage medium can be seen in detail in Listing 2.
The FileStorage object in this case represents the
storage medium that is being used for the ZODB.
When using a ZODB adapter for a relational
database the call must be amended accordingly.
The subsequent calls open the database and create
the actual ̀ root’ object through which the ZODB is
addressed by the application.

Serialisable Python objects can now easily be
deposited in the ZODB:

root[`red’] = ̀ ZODB is cool’
root[`blue’] = [`Perl’,’is’,’cool’]

Assignment only stores the objects in the ZODB
temporarily. In order to store them persistently –
that is permanently – the transaction must
be committed:

get_transaction().commit()

A transaction is an atomic operation and consists of

Listing 1: Pickling an object
#Import the pickle module
import cPickle
class myClass:

def_init_(self,num,txt):
self.num=num
self.txt=txt

#Generating a myClass object
instClass=myClass(212,’Python is cool’)
fname=’instClass.p’
#Serialising instClass into a file
cPickle.dump(instClass,open(fname,’w’))
#Open file with pickled object and
#create a new object
newinstClass=cPickle.load(open(fname,’r’))
print newinstClass.num,newinstClass.txt

Listing 2: Opening a ZODB database
from ZODB import DB, FileStorage
fstorage = FileStorage.FileStorage(`Data.fs’)
db = DB(fstorage)
connection = db.open()
root = connection.root()

PROGRAMMINGPYTHON

13 · 2001 LINUX MAGAZINE 57

a sequence of changes within the database. The
transaction mechanism of the database ensures
that either all changes are carried out or none.
This guarantees data integrity between two
commit calls.

After the data have been stored in the ZODB they
can, of course, be retrieved. Opening the ZODB is
done in the same way as the writing of data.

Reading the data is identical to using a dictionary:

print root[`red’] -> ̀ ZODB is cool’
print root[`blue’] -> [`Perl’,’is’,’cool’]

Changes in the ZODB

The ZODB automatically recognises changes to
objects and also stores them, with one exception:
changes to lists and dictionaries are not recognised
automatically. That is true on a general level for all
objects that are described as mutable, or
changeable, in the Python philosophy.

Changes to a list or a dictionary must therefore
not be made using

root[`blue’].append(`a lot’)
get_transaction().commit()

but instead require a new assignment of the object:

temp = root[`blue’]
temp.insert(2,’not’)
root[`blue’] = temp
get_transaction().commit()

Persistent classes

Converting classes into persistent classes is
particularly easy. They simply need to be derived
from the class Persistence.Persistent. The process in
detail is illustrated by the example in Listing 3.

As explained above, changes to mutable data
types are not automatically recognised by the ZODB.
In such cases alterations have to be explicitly
indicated to the database by setting the attribute
_p_changed to 1. The ZODB will then update the
object accordingly:

class PLanguage(Persistence.Persistent)
....
def setAuthor(self,author):

self.authors.append(author)
self._p_changed = 1

Outlook

The Zope extension Zope Enterprise Objects (ZEO)
can be used to build a distributed ZODB, which
means objects can also be stored distributed.

This article shows how easy the ZODB is to use
and that it represents a powerful tool for Python
developers, which allows transparent object
persistence while requiring little effort to learn and
only minor source code amendments.

Listing 3: creating persistent classes

import ZODB
import Persistence
class PLanguage(Persistence.Persistent)

def __init__(self,lang,easy2learn):
self.language = lang
self.learneffort = easy2learn
self.authors = []

....
languages = []
languages.append(PLanguage(`Python’,’very easy’))
languages.append(PLanguage(`Perl’,’very hard’))
languages.append(PLanguage(`TCL’,’easy’))
zodb[`languages’] = languages
TCL = zodb[`languages][2]
TCL.learneffort = ̀ not easy’
get_transaction().commit()

Info
Python in practice: http://www.python.org/psa/Users.html
ZODB pages by A. M. Kuchling: http://www.amk.ca/zodb/
M. Pelletier: ZODB for Python http://www.zope.org/Documentation/
Programmers: Articles/ZODB1
Zope Enterprise Objects (ZEO): http://www.zope.org/Products/ZEO

The author
Andreas Jung lives near Washington D.C. and
works for Zope Corporation (formerly Digital
Creations) as a software engineer in the Zope
core team. Email: andreas@andreas-jung.com

