
KNOW HOW QT

34 LINUX MAGAZINE 13 · 2001

When the KDE project was started by Mathias Ettrich, he needed to decide

on which graphical toolkit to use to base the environment on. There were

some options available, but one of the most capable toolkits was Qt by

Trolltech in Oslo, Norway.

One of the great things about Linux is the sheer
number of available options and choices you can
make. There are often multiple solutions for a single
problem. An example is in windowing environments;
we have KDE, Gnome, fvwm, Afterstep,
Enlightenment etc.

One of the most popular windowing environments
on Linux and UNIX-based systems is the K Desktop
Environment (KDE). KDE has been around for
approximately five years and has developed into a
mature project with hundreds of developers and
some very competent, stable releases.

A graphical toolkit is a number of buttons,
checkboxes, scrollbars etc and other facilities to
write graphical software with. There are a few
toolkits available but Qt is one of the most capable,
if not the most capable.

From those early days five years ago, Qt has
developed into an incredible piece of software with
thousands of users using the toolkit around the
world on a number of platforms and operating
systems. This series of articles is going to look at Qt,
what it can do and what kind of software you can
write with it.

Getting to know Qt

To start with, it is a good idea that we get a grasp of
what Qt can do and what facilities are available. In
this issue we will look at these features and get a
good grounding of Qt’s facilities.

Firstly, Qt is a very portable toolkit. Qt has been
made available and ported to the following platforms:

● Linux (all major distributions)
● UNIX (all major UNIXes)
● Microsoft Windows
● Mac
● Embedded Devices (Casiopeia, iPAQ etc)

There are also some other ports, so Qt always
remains a portable toolkit.

Not only is Qt portable, it is licensed to your
needs in a very flexible way. Qt is available in
three versions; Free, Professional and Enterprise.
The free version involves Qt for X11, Embedded
(and recently Windows). The free versions for
X11 are licensed under the GPL and include full
source code. The free version of Qt/Windows is
binary only and does not contain the source
code of the toolkit. For those wishing to write
closed source or commercial software there is
the Professional and Enterprise editions, which
have different licensing to enable this. This
licensing scheme makes Qt a very flexible toolkit,
and as it is maintained by a company full time it
always remains competent, competitive and, in
our case, free.

What can it do?

In these articles I am going to be focusing my efforts
on the newly available Qt 3.0 version. There are
previous editions such as the 2.x.x series and the
1.4.x series that are floating about, but I suggest you
use the most current version available.
Although at first glance Qt looks like a number of

ON THE QT
JONO BACON

Qt Designer
main window



KNOW HOWQT

13 · 2001 LINUX MAGAZINE 35

widgets (controls) that you can use to develop
software, it is much more than that. Qt not only
offers you a number of pre-designed widgets, but
also the capability to roll your own widgets. Qt also
includes a number of classes for managing data such
as strings, numbers, vectors, linked lists, stacks, XML,
DOM trees etc. On top of this Qt offers a number of
networking features, support for multiple image
formats and international text support.

Qt does not stop there, there’s also the following:
● Multiple monitor support

Qt allows applications to utilise multiple screens.
On UNIX, this will support both Xinerama and the
traditional multi-screen technology.

● New Component model
Qt provides a platform-independent API for
runtime loading of shared libraries and
accessing of their functionality using a COM-like
interface concept.

● Support for the latest evolutions in GUIs
Qt supports the docking/floating window
concept of modern, complex GUIs. It also adds a
GUI control for interactive editing of rich text.

● Regular Expressions
Qt-3.0 features a new and powerful regular
expression engine greatly simplifying complex
text manipulation operations. The syntax is
compatible to, and as powerful as, Perl regular
expressions while at the same time including full
support for Unicode.

● Accessibility Support
Qt controls provide information for accessibility
architectures, so that visually or mobile-impaired
people can use applications written in Qt with the
standard tools provided (eg the Windows
Magnifier and Narrator).

● 64-bit Safety
The emerging, next generation of 64-bit
hardware is supported by Qt 3.0.

Database Programming

Qt 3.0 includes a platform and database-
independent API for accessing SQL databases. The
API has both ODBC support and database-specific
drivers for Oracle, PostgreSQL and MySQL
databases, and custom drivers may be added.
Database-aware controls that provide automatic
synchronisation between GUI and database are

included in Qt 3.0. The Qt Designer has full support
for these new controls, resulting in a RAD solution
for database applications.

C++ support

Qt itself is written in and natively supports C++ as a
language. You don’t need to hunt far on the Net for
a raging debate on whether C or C++ is better for
GUI development, but it is acknowledged in a
number of places that C++ is inherently better for
GUI development. Qt is a good example of a well-
crafted toolkit C++ and object orientated paradigms.
In the coming months I will be giving tutorials on
using Qt, and some C++ knowledge is assumed. If
you are unfamiliar with C++, there are a number of
tutorials and good books available on the Net.

Qt Designer

Qt includes a graphical interface building tool called
Qt Designer which can be used to build dialog
boxes, interfaces and more. Qt Designer is an
important component in your software
development with Qt and can save a lot of time in
creating your software.
Qt designer also has support for KDE widgets if

QCAD application written with Qt

cRadio for controlling PCI Radio Cards



desired and can be compiled with this support. I will
be covering installation of Qt in the next issue.

Documentation

One of the great benefits of Qt as a development
tool is its incredible documentation. Qt includes
documentation on all of the classes included in it as
well as a tutorial, information on Qt modules and
other information. This documentation is essential
when coding to look up method names and details.
Trolltech has built an application to support this
documentation called Qt Assistant. Qt Assistant
provides an interface to the documentation
provided by Qt, and also enables more
documentation to be added.

Internationalisation

If you want to write software in multiple languages
(natural languages, not programming languages),
then you are going to need to translate strings of
text across your programs. Trolltech has developed
Qt Linguist to assist in this process. Qt Linguist
provides a number of features for making your
programs more internationally aware.

Uses for Qt

For those of you new to Qt, you may be reading this
article and wondering just what kind of software you
can write with Qt? Well basically you can write any
kind of software that you need to. Qt provides most
of the visual GUI elements that you will need and Qt
also provides the backend and internal facilities.
Remember that Qt is a commercial product with a
free edition that is not restricted or cut away at. You
are getting an industry-strength toolkit for free.

KDE Integration

Many people are starting use KDE as their standard
interface for Linux. This has been due to a number
of solid KDE releases, an easy to use interface, and
good quality application software.

KDE itself is written in Qt. This is a major benefit
as it means that you have a massive wealth of code
already written for KDE that is available for a
reference. KDE has also developed extensive
features on top of the Qt features and making a
KDE-aware program out of a Qt program is a
nominal job.

This means that by learning Qt, you are also
making yourself skilled enough to write software
that is compatible with one of the most popular
desktops for Linux.

Where to now?

Now we have had a brief look at Qt, we will be
taking a look at writing some software with it. This
will begin in the next issue, but before then, there
are some preparations I suggest you take.
Qt is written in C++ and uses C++ as the language
to write Qt software in (although there are other
unofficial bindings). If you are unfamiliar with
C++, I suggest you take a look at it and get to
grips with it. It is a powerful language and needs
some practice to get to use properly. There are
plenty of good books and tutorials available to get
you started.

Qt is a powerful, flexible toolkit for professional
grade software development. Qt has been written
from the ground up as a capable toolkit for
development of free and commercial software,
and using it is very satisfying. Next issue we will
begin using Qt to write some software. I will
hopefully see you then! ■

KNOW HOW QT

36 LINUX MAGAZINE 13 · 2001

MuX2d music typesetting package for TeX

Qt GUI Designer running in a Solaris environment


