
PROGRAMMING C

56 LINUX MAGAZINE 14 · 2001

LANGUAGE
OF THE ‘C’

STEVEN GOODWIN

A language so

synonymous with

computing history

and Unix it’s very

name is the epitome

of the elite. These

articles for the

beginner, teach you

the fundamentals of

‘ANSI C’, as well as

providing interest

snippets from under

the hood of the

compiler.

Examples of the
pre-processor:
#include <stdio.h>
#include “myprogram.h”
#define VERSION_NUM 1.2
#define MAX_TABLE_SIZE 32
#ifdef _WIN32

printf(“I refused to beU
compiled under WindowsU
!\n”);
#endif

When Stephen Hawkin wrote his best-selling
work ‘A Brief History of Time’, he remarked that his
editor informed him that every equation would cut
the sales of his book in half. In a similar fashion, my
editor informed me that every paragraph I wrote
without a piece of code would lose half my
readership. So, in the interests of keeping everyone
happy, here is the obligatory ‘Hello,World’ program.

1 #include <stdio.h>
2
3 int main(int argc, char *argv[])
4 {
5 printf(“Hello, World\n”);
6 return 0;
7 }
8 /* A variation of the standard ‘Hello
World’ problem - seen everywhere */

Type the above code into your least unfavourite
text editor (omitting the line numbers), save it as
‘myfirsttime.c’ and in a shell type,

gcc myfirsttime.c
./a.out

or, if you prefer,

gcc myfirsttime.c -oMyProgram
./MyProgram

Should you have the development environment
installed correctly, Linux should pop back with the
phrase ‘Hello, World’.

What’s Going On?

The simplicity of the example above belies the fact it
contains the vital ingredients that make ‘C’, ‘C’.
Namely,

● The pre-processor
● The compiler
● The linker

The compilation process is built from three major
steps, executed automatically by ‘gcc’ or ‘make’, in
the above order. However, the whole process is just
called ‘compilation’; it is very rare to explicitly run
any specific step (known as a pass). Only when
there are problems would you refer to any specific
step, e.g. “Help!!!! My program won’t link!”. See
BOXOUT: GCC, for more information on the
workings of this process.

The Pre-processor

Any line in ‘C’ that begins with the hash mark (#)
actually belongs to the pre-processor, not the
compiler. The common instructions (called
directives) are include (as in our example), define (to
create macros) and ifdef (which, along with endif,
support conditional compilation). It runs
immediately before the compiler, and gets to
modify, fix, adapt and generally fiddle about with
the source text.

By including the header file stdio.h (STanDard
Input/Output) we may use the contents of that file
within our program, as if we’d wrote it ourselves. In
this case, we will use ‘printf’ to output text to
stdout. i.e. the screen. By including the name in
brockets (‘<’ and ‘>’) we indicate that this file is
stored (by default) in ‘/usr/include’ with all the other
system header files. If the file were stored in the
current directory, we would use double quotes (“)
for the name. Relative paths can be used with the
name (as are absolute paths, but these are not
recommended for portability).

The pre-processor will also strip out comments from
your source code - and like any good programmer
you will have several of them in your code to strip
out, right? For example,

8 /* A variation of the standard ‘Hello
World’ problem - seen everywhere */

The function name can consist of any
combination of alphanumeric characters, or the
underscore (‘_’), but must begin with a letter or
underscore. The latter is not recommended as some
systems use underscored names for their own
macros, variables and functions. Case is important,
because the two variables ‘count’ and ‘COUNT’ are
seen differently by the compiler. They must also be
unique (in the first 32 characters), and must not
clash with any of ‘C’ reserved words (see BOXOUT:
Reserved Words).

If functions could only process information they
would still be useful. But not very. Like a Von
Neumann architecture, it requires input and output.
This is achieved with parameters (sometimes called
arguments) and a return type, respectively.

All functions require that a return type, and
parameter list is given. However, as seen in the
example above, the word ‘void’ can be used to
indicate that nothing comes out of the ‘Banner’
function - and nothing goes in.

Into the Gap

When a function is called, data is passed into it with
parameters. As many as you like, as long as each is
separated by a comma. Each parameter consists of
a type (to describe its size and structure) and a name
(or identifier, so it can be referenced).

All parameters in ‘C’ are passed ‘by value’, so
should the identifier get changed within the
function (intentionally, or otherwise) then the data
held in calling function will not get changed
because only the value was passed to the function.

We Can Work it Out

Now to get information out of a function. One of
the limits we have to live with for the moment is
that we can only return one piece of data. This is
because ‘C’ only supports a single return type. We’ll
look at ways around this in future articles.

Declaring this return type is done by prefixing the
function name with the, er, type you want to return.
You then indicate what value you want to return by
using the ‘C’ instruction, er, return. (This ‘C’ lark’s
not as hard as it looks, is it?)

In listing 4, line 16 gives the value of ‘100’ back
to ‘main’ which then (at line 7) stuffs it into (the
more technical term is ‘assigns it to’!) the variable
‘iNum’. Some people will place brackets around the
value to return, but this is a hang over from K&R C
dialect and no longer necessary.

Note that if the function is declared as having a
return type you must provide one, otherwise the
compiler will generate an error. Should there be a
case where an appropriate value could not be
returned (e.g. size of a file that doesn’t exist), then
allow the return type to include an error code.

In cases where there is no return type (e.g. the
function begins ‘void’, as with ‘void LeaveGap(int

PROGRAMMINGC

14· 2001LINUX MAGAZINE 57

Listing 2
1 #include <stdio.h>
2
3 void Banner(void);
4 void LeaveGap(int U
iLines);
5
6 int main(int argc, chU
ar *argv[])
7 {
8 Banner();
9 LeaveGap(2);
10 return 0;
11 }
12
13 void Banner(void)
14 {
15 printf(“My U
program\n”);
16 }
17
18 void LeaveGap(int U
iLines)
19 {
20 int i;
21
22 for(i=0 ; i < U
0iLines ; i++)
23 printf(“\n”);
24 }

Listing 3
1 #include <stdio.h>
2
3 void ParamChange(int
iNum);
4
5 int main(int argc, chU
ar *argv[])
6 {
7 int iNum;
8
9 iNum=10;
10 printf(“iNum = U
%d\n”, iNum); /* iNum=10 */
11 LeaveGap(iNum); U
/* Passes the value of iNU
um - 10 - not iNum
12 itself */
13 printf(“iNum = U
%d\n”, iNum); /* iNum=10 */
14 return 0;
15 }
16
17 void ParamChange(int U
iNum)
18 {
19 iNum = 0;
20 }

Comments begin with the ‘/*’ token, and ignore
everything up to (and including) the first ‘*/’ it sees,
which ends the comment. They can not, therefore,
be nested (since the second ‘/*’ will have already
been ignored), but the comment may extend over
several lines.

/*
A comment ‘box’
over four lines

*/

The Compiler

The mother! The daddy! This takes our ‘.c’ file
(replete with pre-processing modifications, macro
substitutions, and so on) and turns it into a binary
file. Not an executable elf file, though. A binary. It is
called an object file, and has a ‘.o’ extension. When
compiling single files (with gcc) it is usually deleted
once compilation has finished. With larger projects
(using make files), they are kept to improve speed,
since only out of date ‘.o’ files will be re-built.
Library files are also ‘.o’ files, but (naturally) these
are not deleted after use!

The Linker

The final hurdle. It combines ‘myfirsttime.o’ and any
specified libraries into a single executable. That is, it
links them together. By default, the library file
/usr/lib/libc.so is also included - since this contains
standard C routines (such as printf) - as is the all-
important start-up code: /usr/lib/crt1.o. If you were
writing a program using mathematics (with
functions like sin or cos), you would use ‘#include
<math.h>’ in your source file, and link in the maths
library (/usr/lib/libm.so) with,

gcc mathscode.c -lm

Execution always begins with a function called
‘main’. So, if you haven’t created a ‘main’
function, the linker will complain with an
‘undefined reference to ‘main’’ error. You will also
get this error if you use the ‘math.h’ header file
(which says ‘I wish to use the ‘sin’ function), but
then fail to link the appropriate (libm.so) library
(which says ‘here is the code for the ‘sin’ function I
told you about earlier’).

A Break From The Old Routine

Every ‘C’ program is made up from routines, called
functions. Even the library code (like ‘printf’) is
implemented as functions. There are no built-in
functions with ‘C’ (see BOXOUT: Design Philosophy),
and there is no difference in the way we call a library
function, compared to one of our own.

Listing 2 uses three invocations of a function in ‘C’:

PROGRAMMING C

58 LINUX MAGAZINE 14 · 2001

3&4 As a Prototype Tells the compiler that there is going to be a function in the
code called ‘Banner’, but it has yet to appear in the source.
It gives the compiler enough information allowing it to be
used, pending the implementation - which may be in this
‘.c’ file. Another ‘.c’ file. Or a ‘.o’ library file. You should
always include prototypes for your functions, and naturally,
the parameters should always match, however it is not
necessary to include the name (iLines). Sometimes,
prototypes are prefixed with the reserved word ‘extern’,
meaning that this is the prototype for a function that
resides in another file (external to this one).

8&9 As a Function Call Makes a call to the ‘Banner’ code, and once complete
continues with the statement immediately following it.
All function calls must include brackets, even if there are
no parameters to pass. A function name without
brackets, although valid, is actually a pointer to the
memory location where the function is stored!

13-24 As a Definition The code! The braces indicate the start and end of the
function definition. Between them lie the instructions,
each ending with a semi-colon. See BOXOUT:Layout.

GCC
gcc allows you (the user) to
review the compilation process.
Each stage can be processed
with it’s own program, and
generates its own intermediate
output file. Although not
particularly useful for the
beginner, it is sometimes
interesting to see how the path
from source to executable
occurs. Note: gcc also gives you
access to the assembler-
generated output from the
compiler; a step I do not explicit
consider here.

To see these intermediate
files, build your code with, gcc -
save-temps myfirsttime.c
Although I refer to ‘libc.so’ as a
file used by linker, it is not
always (ever?) a binary file. It is,
in fact, a linker script indicating
the true location of the shared
library (or libraries). Usually
/lib/libc.so.6’.
(*) GCC doesn’t actually use
this file for pre-processing. It is
included to demonstrate the
method.

iLines)’) you may still use ‘return’ to leave the
function early - you just omit any return data.

void Banner2(void)
{

/* Do stuff here */
return;
/*

** Any code here is never called - but being a
** compiled language, must still be valid
syntax.
*/
}

Functions that do not return a type are
sometimes categorised as procedures. From a
stylistic point of view, procedures should be named
depending on what they do. Whereas functions
should be named by what they return.

Exile On Main Street

Earlier, we said that main was just a function like
any other. Is that really true?

I’m afraid it is! Although we never call it (*), Linux
does. Through the shell. It prepares the two
parameters for main (argc and argv) from the
arguments you type at the prompt. It also takes the
return value (Listing 5, line 9) from the program and
passes it to the shell as the exit code.

The ‘argc’ parameter describes the number of
parameters passed to this program on the
command line. ‘argv’ is a pointer (you’ll have to be
patient to learn about these beauties!) to an array
(you’ll have to be less patient to learn about these!)
containing each of the arguments.
Run listing 5 with:

./a.out Hello World

and you should see:

0 : ./a.out
1 : Hello
2 : World

In addition to the real arguments (which follow
the quoting conventions for the shell you are using),
there is one surprise. The name of the program as
argument zero. Replete with path.

And the exit code? When a program completes,
this value is returned to the shell indicating its
status. Zero (0) is used for ‘completed successfully’,
while one (1) indicates a failure. The header file
<stdlib.h> creates two text macros, EXIT_SUCCESS
and EXIT_FAILURE that indicate this, and they can
be returned from ‘main’, instead of the values 0
and 1.

There is no good reason for not including an
exit code (at least ‘return 0;’) at the end of your
‘main’ function. It is certainly better (and more
standards compliant) than declaring your function
as ‘void main(void)’, which gcc will warn against,
but still allow.

There was a case, years ago, when a programmer
(writing assembler, not C) created a one line
program - with a bug in it! The bug being he didn’t
return an exit code, confusing the OS, causing it to
take the next number it saw (which he had not
placed) and use it. Don’t fall into the same trap!

(*) It is technically possible to call main from
inside your program (recursively) because it is just a
function! However, very few people do. And even
fewer in real-world environments.

Wind Of Change

Variables: the proverbial lifeblood of a program.
They run through the veins (functions) passing
information, handling sort data, and holding your
frag count in Quake! We have already seen
variables used in the example above, but I didn’t
dwell on them. Now I will!

Variables in ‘C’ have more restrictions than their
counterparts in script languages. Notably, they must
have a specific type that is declared before they are
used. Also, once given a type (say, int) they can not
change it. Ever. This allows the compiler to provide a
more optimal storage method (say the heap, or a
specific register) which in turn produces faster code.

int iNumberOfNames;
long iMaximumNumberOfNames = 16;
float fRadiusOfCircle, fCircumference;
unsigned char cMiddleInitial;

Above, we have declared five variables. The name
given to each is arbitrary; any combination of
numbers, letters (either case) and the underscore
may be used (as with functions, above). However,
for stylist reasons, I prefix each name with a single

For Listing 2

PROGRAMMINGC

14· 2001LINUX MAGAZINE 59

Listing 4
1 #include <stdio.h>
2
3 int U
GetNumEntries(void);
4
5 int main(int argc,U
char *argv[])
6 {
7 int iNum;
8
9 iNum = U
GetNumEntries();
10 printf(“iNum = U
%d\n”, iNum);
11 return 0;
12 }
13
14 int GetNumEntries(void)
15 {
16 return 100;
17 }

Listing 5
1 #include <stdio.h>
2
3 int main(int argc, chU
ar *argv[])
4 {
5 int i;
6
7 for(i=0;i<argc;i++)
8 printf(“%d : %s\n”, I, U
argv[i]);
9 return 0;
10 }

letter indicating it’s type, be it integral, floating
point or a character.

When declared, the variable has no value. This
doesn’t mean the variable is zero. It means it has no
discernible value – i.e. it is filled with garbage and
could be anything. It is therefore imperative that all
variables are initialised before use, perhaps in the
declaration (as shown with
‘iMaximumNumberOfNames’ above), or in a line on
its own using the copy-cat syntax of, (also see
BOXOUT: Constant Values)

iMaximumNumberOfNames=16;

Most types may be considered signed, or
unsigned. Signed means it is capable of storing a
sign (either + or -) with the number. Unsigned
means there is no sign, and therefore always
positive. By default, types are signed (except in the
case of ‘char’s, which is compiler-specific!) It is
generally considered bad practise, however, to write
code that relies on all chars being ‘unsigned’ (or
vice-versa).

This sign/unsigned feature can cause problems.
Should you store a character from the input stream
(say) in a ‘char’, and the system you are using has
‘unsigned char’s then the end of file token (EOF,
which equals -1) can not be correctly identified.
FWIW, gcc defaults to ‘signed char’s, so you should
have no such problems. But it always best to avoid
the possibility altogether, and use a variable with
enough space for all possible outcomes – and an
error code.

Table 1 indicates the range of values possible with
each data type to help you choose the appropriate
data type for any given occasion.

Some programmers will write ‘long int’. Since
‘int’ is considered the default type, this actually
means ‘long’. And when a programmer writers
‘short int’ – they mean short.

For portability between machines, your code
should not rely on the size of any type (although
‘int’ is large enough to be used for most purposes).
Since this can be difficult, many programmers will
define their own types called ‘WORD’ or ‘int32_t’,
implying the variables’ size, with the code. These
types area used in exactly the same way as the built-
in types like ‘int’ and ‘float’, and are defined with
the lines:

typedef unsigned short WORD;
typedef signed int int32_t;

Then, should the platform change, only these
‘typedef’ instructions need to change. There are
examples of this in /usr/include/sys/types.h of most
distributions.

Finally, there is one special type you should be
aware of: size_t. Any variable declared with this
type has enough bits in it (literally) to reference any
address in memory (and consequently any array that

can fit into memory). It is usually an int. However, in
an embedded system where the processor is, say, a
Z80 (making the natural size for an int, 16 bits) with
an extended memory, able to access a megabyte,
the size_t type would have to be 32 bits long. Like I
said, you should be aware of it, even if it doesn’t
make too much sense at the moment.

Not all types are typical

‘C’ may have types, but it is only weakly-typed. So,
if you have two variables,

int iNum = 10;
float fVal = 12.5f;

The compiler will not stop, and not usually warn,
you when mixing incompatible data types with code
like:

iNum = 0.4f;
iNum = fVal * 7;
fVal = iNum / 3;

It is possible to predict the outcomes of these
expressions, since ‘C’ has rules for these things. Am
I going to tell you what they are? No! I’m going to
tell you not to do it!

So there!

You’re not local, are you?

Time for another example.
Here we have demonstrated two types of

variable. Local and global. The variables declared
inside the function braces (lines 7 & 14) are termed
local, since they only belong to code inside the
function; between the braces. This is termed its
scope. The variable outside all the functions, at line
3, is termed global. i.e. it has global scope, and as
such can be accessed by any of the functions.

If a variable is declared at local, and global scope
(as in the example above), the local variable will
‘hide’ the global one making is inaccessible.

Global variables can be placed anywhere in the
file, but since they are generally considered ‘a bad
thing’, it is best to keep them together in a coders
commune at the top of the file! You might want to
adopt a naming convention to distinguish them and
prevent the ‘hiding problem’, above. Perhaps by
prefixing them with ‘g_’.

Instructions

So far, I’ve referred ‘instructions’; the ‘printf
instruction’, the ‘if instruction’, the ‘return
instruction’ and so on. In truth, they are something
more than just instructions. They are statements.
Each function comprises of braces, and a list of
statements, where a statement can be anything
from table 2.

PROGRAMMING C

60 LINUX MAGAZINE 14 · 2001

Table 1
Type Size Unsigned Range Signed Range Notes
char 1 0 to 128 -128 to 127 A character. This may be signed, or

unsigned, depending on your compiler.
short 2 * 0 to 65535 -32768 to 32767 A short integer.
int 4 * 0 to 4294967295 -2147483648 to 2147483647 Integer. Most common for loops and

counters. It is also the size most fitting for
your machine.

long 4 * 0 to 4294967295 -2147483648 to 2147483647 A long integer.
float 4 Always signed. Using six digit precision A floating point number in IEEE format.

Numbers in floating point format are usually
suffixed with ‘f’, i.e. 3.1415f to distinguish
them with doubles.

double 8 Always signed. Using ten digit precision Double precision, again from IEEE. Used
when floating point numbers are not
accurate enough.

Note: The standards are vague about the exact number of bits used for each type. As long as ‘short’ is larger than ‘char’, and ‘less than or
equal’ to the size of ‘int’, it doesn’t matter. It is up to the compiler to choose suitable sizes for the target machine.

Listing 6
1 #include <stdio.h>
2
3 int iVar=100;
4
5 void fn(void)
6 {
7 int iVar2=20;
8
9 printf(“fn1 : iU
Var = %d, iVar2 = %d\n”, U
iVar, iVar2);
10 }
11
12 int main(int argc, U
char *argv[])
13 {
14 int iVar=1, iVar2=2;
15
16 printf(“main : U
iVar = %d, iVar2 = %d\n”, U
iVar, iVar2);
17 fn();
18
19 return 0;
20 }

Reserved Words
auto break case char const
continue default do double else
enum extern float for goto if int
long register return short
signed sizeof static struct switch
typedef union unsigned void
volatile while

Table 2 implies a few things. Let me clarify, with a
brief Q & A.
Q. When writing an ‘if’, you don’t need braces.
True?
A. True. So long as you only have one statement,
since the second one would be part of normal code,
and not the ‘if’.
Q. But my ‘one statement’ could be a compound
statement; containing lots more statements. Really?
A. Yes. It’s like asking a ‘three-wish genie’ for
another three wishes. In programming ‘C’, that’s
allowed!
Q. Do the braces mean I can declare more local
variables inside the ‘if’ statement, and not at the
beginning of the function?
A. Yes! This refers back to the concept ‘scope’. A
variable can be declared after the brace, and will
remain active until the end brace. So although you
can use your newly created variable inside, say, an
‘if’ you can not use it outside.

if (iEntriesToSort > 0)
{
int a=1;

/* Look, ma! I created a local
variable in a strange place! */
}
/* ‘a’ is no longer valid, since it’s gone out
of scope */

Q. If you omit all three expressions from a ‘for’, and
use the empty statement you can write code like:
for(;;); What does that do?
A. Nothing. Forever. It sits and spins in an endless
loop since there’s no get out clause (exp2 above),
and no code to jump out.
Q. Is there a use for the empty statement?
A. Yes. But be careful. If you were to write:

if (x>0);
{
/* X is five. Why is this always

getting called? */
}

you might fail to notice the semi-colon after ‘if’.
This counts as an (empty) statement, and therefore
the open brace begins a new compound statement
that will always execute.

Q. Ouch! Could that happen elsewhere?
A. Yes, but with slightly different results.

while(x>0);
{
x— —;
}

This doesn’t exit because the loop executes the
empty statement while x is greater than zero, and
since it never reaches the post-decrement, is shall
always do so.

Q. So what’s it good for them?
A. A unified syntax. (don’t ask!) And easier to read
code, when negative logic would make it less
intuitive to the reader.

if (?some complicated expression?)
;

else
DoStuff();

Design Philosophy and
History
‘C’ was created in 1972 by Brian W. Kernighan and
Denis M. Ritchie on the UNIX operating system,

running on DEC PDP-11 (ask your father about
these machines!). It is a portable, general-purpose,
programming language (as opposed to Cobol, say,
whose use is very much limited to the business
sector) with ‘an economy of expression?and a rich
set of operators’. It is also a fairly low level language
(since it can manipulate individual bits within a
byte), mixed with high level features (of control
structures, such as ‘while’ and ‘for’ loops) making it
appear somewhat of a hybrid.

To maintain the generality of the language, much
of the functionality, like input/output and file
handling, was implemented in libraries - not
included as part of the language. This meant the
compiler was small, could be re-used easily and the

language learnt quickly. Most of the libraries could
be written in ‘C’ itself, allowing for greater
portability.

FWIW, when Unix was re-written, it took up just
over 13000 lines of system code! Only 800 were
assembler. The rest was ‘C’.

PROGRAMMINGC

14· 2001LINUX MAGAZINE 61

Table 2
; An empty statement. Means do nothing.
exp; An expression, ending with a semi-colon. Such as ‘a = b*20;’.
exp; A function call (with brackets, remember), also ending with a semi-colon. We’ll see shortly why a function is

considered an expression.
if (exp) stmt Conditional execute stmt is exp is true (i.e. non-zero)
if (exp) stmt1 Conditional, with ‘else’ clause
else stmt2
while (exp) stmt Pre-check loop. Continually execute stmt while exp evaluates to true
do stmt while(exp); Post-check loop. As the standard ‘while’ loop, but guarantees that stmt will always execute at least once.
for(exp1;exp2;exp3) stmt Equivalent to:

exp1;
while(exp2)

{
stmt
exp3;
}

One, two, or all three expressions may be omitted from the ‘for’.
switch(exp) stmt See control structures in a later issue
return; Leave a ‘void’ function
return exp; Leave any non-void function with a value
goto label; <cough!> <splutter!>
{ stmt_list } A compound statement. You may, optionally, declare variables at the beginning of a compound statement.

Each function declaration actually consists of a name and parameter list, followed by a compound statement.

Note: stmt means ‘statement’, any one from the table above. exp means expression.

Pass Program Input File(s) Output File
Pre-processor cpp (*) myfirsttime.c myfirsttime.i
Compiler gcc myfirsttime.i myfirsttime.s
Assembler as myfirsttime.s myfirsttime.o
Linker ld * a.out
*myfirsttime.o/usr/lib/crt1.o/usr/lib/libc.so

Constant Values
When assigning a value to a variable, with a line like ‘iNum = 3;’ the value is termed a constant, since it can not change. There is more than

one way to write it, however,

iNum = 1406; Without any prefixes, the number is in base 10. Decimal. Like wot we used ta, guv!
iNum = 0x57E; ‘0x’ or ‘0X’ gives us hex.
iNum = 02576; Prefixing with a single ‘0’ gives us octal. Therefore, only numbers 0-7 may be used.
iNum = ‘A’; Single quotes around a single letter produce the ASCII value of that letter. In this, 65. This constant can be assigned

to non-char types.
fNum = 0.1f; The presence if a decimal point and a suffix of ‘f’ indicates a floating point number. Assigning a floating point

number to an integer variable will cause truncation (i.e. it ignores the fractional part). All floating point constants
must include the decimal point, otherwise it will interpret ‘12f’ (say) as an integer but report an error when it
means the ‘f’ hex digit.

fNum = 0.1; Without the ‘f’, the compile treats the constant as a double precision number. Although not a bad thing, handling
double precision numbers is more costly in terms of processing and code optimisation.

