rCOMMUNITY rFREEWORLD

Make room for the FSF kernel

GNUS?

RICHARD SMEDLEY

The GNU Hurd is the GNU project’s replacement for the Unix)
kernel. Most of us are getting by quite nicely with the Linux
kernel in this role, but the Hurd will offer several advance features when it reaches
release status. Come and discover more.

The release, as we near publication, of Debian’s with distribution conditions that will enable us to

new G1 binary CDs of GNU/Hurd has prompted distribute it. If they decide to do so, then we will

an expansion of this column’s coverage of the probably start work. CMU has available under the

Hurd. We hope to present to you our full report same terms as Mach a single-server partial Unix

on installing and running this release in the next emulator named Poe; it is rather slow and

issue, meanwhile we investigate what makes the provides minimal functionality. We would

Hurd so special. probably begin by extending Poe to provide full
functionality. Later we hope to have a modular

How'’s Trix? emulator divided into multiple processes.” —
GNUsletter, January 1991.

Three years after the founding of the Free Eventually Mach 3.0 is released under a GNU

Software Foundation (FSF), by Richard Stallman, GPL-compatible licence and the Hurd is officially

the first GNUsletter identifies TRIX — as the GNU announced as a group of servers running on top

kernel. In 1987, whilst changes continued to be of the Mach microkernel.

made to TRIX, Stallman and the FSF began It was into this background of a slow start for

negotiating with Professor Rashid of Carnegie- the GNU kernel that Linus Torvalds announced a

Mellon University (CMU) about working with kernel of his own. Ten years on we see the Linux

them on the development of the Mach kernel. In
the February 1988 GNUsletter Stallman spoke
about taking Mach and putting the Berkeley
Sprite filesystem on top of it, after first removing
the Berkeley Unix — specific code. At the end of
1988 the choice is still not settled between Mach,
which was not yet Freely licenced, and TRIX.
Sprite was even discussed as a full kernel solution.
Some work starts on developing the Hurd in
1990 but more work goes into trying to free
Mach: “We are still interested in a multi-process
kernel running on top of Mach. The CMU lawyers
are currently deciding if they can release Mach

A Unix Tradition.

The Free Software world is littered — some would say plagued — with bad puns and
self-recursive acronyms. ‘Hurd’ stands for "Hird of Unix-Replacing Daemons’. And,
then, *Hird" stands for *Hurd of Interfaces Representing Depth’. So we have the first
software to be named by a pair of mutually recursive acronyms.

Marcus Brinkmann working on the HURD

84 LINUX MAGAZINE | 14 - 2001

kernel scaling up for enterprise, taking over the
embedded sector and slowly marching onto the
desktop — particularly where the advantages of
thin client solutions are appreciated. GNU/Linux is
the success story of the FSF's project to produce a
free Unix-like OS.

Debian and the Hurd

During those ten years work on Hurd has
occasionally been rather slow. Although the Hurd
was booting by 1994, and later that year ran
emacs and gcc, progress slowed after the binary
release of 1996, which worked with NetBSD boot
floppies. Piecemeal development left the Hurd
broken. It was in this state when in 1998 Marcus
Brinkmann started the Debian GNU/ Hurd port.

A keen Free software advocate, Brinkmann was
also inspired by the freedoms which a microkernel
can give when running a multi-server system such
as the Hurd (see Free, Freer, Freest, below).
Brinkmann’s lead in bringing the
powerful packaging tools of Debian (such
as dpkg) and the porting to GNU/Hurd of
almost half of the packages currently
available for Debian GNU/Linux has
helped to revitalise the kernel project.
Making GNU/Hurd a Debian port has
brought in many more developers and users to
contribute bug reports. Debian binary CDs and a
not-too-difficult installation procedure have
resulted in a more accessible system for those
merely curious today, who may be the committed
users of tomorrow.

A New Strategy of OS Design

OS development in the period up to the mid
1990's left many with the impression that
microkernels were “better in theory but worse in
practice.” We will counter-balance that false
conclusion with a rehearsal of the differences
between microkernels and monolithic kernels and
then look at what makes the Hurd (on Mach) so
different from other microkernel OS
implementations.

Free, Freer, Freest.

Linux and BSD give you freedoms to modify, run
and copy the OS and applications you need.
Hurd gives additional freedoms — particularly to
the advance user.

Kernel code is no longer something that cannot
be touched. Any user, without root privileges,
can extend their kernel with their own services,
and share their code with other users. Hurd
takes ideas of Free Software and of unix
modularity to its logical extreme, ultimately
benefiting developer and user alike.

FREEWORLD.\ COMMUNITY‘I

Why not Linux?

You may find that GNU/Linux is the answer to most of your requirements. However the
GNU organisation puts forward a powerful case for the Hurd:

It's Free Software — all the benefits and protections of the GPL.

It's compatible — a modern, Unix-like kernel using the GNU C library which closely
follows the standards of ANSI/ISO, BSD, POSIX, Single Unix, SVID, and X/Open.

It's built to survive — object-oriented structure.

It's scalable — The Hurd implementation is aggressively multithreaded so that it runs
efficiently on both single processors and symmetric multiprocessors. The Hurd interfaces
are designed to allow transparent network clusters (collectives), although this feature has
not yet been implemented.

It's extensible — every part of the system is designed to be modified and extended.

It's stable — It is possible to develop and test new Hurd kernel components without
rebooting the machine (not even accidentally). Running your own kernel components
doesn't interfere with other users, and so no special system privileges are required. The
mechanism for kernel extensions is secure by design: it is impossible to impose your
changes upon other users unless they authorize them or you are the system administrator.

A monolithic kernel is (relatively) easy to get off
the ground, but gradually becomes harder to
maintain. All of the services that an OS must
perform for programs to share hardware, and for
users to share a computer, are implemented in the
kernel. The kernel grows as more code is added
for device drivers, network protocols, process
management, authentication, file systems, POSIX
compatible interfaces and more.

As all parts of the kernel can access all of the
kernel's data structures, this is a temptation for
some coders to make short cuts, instead of
programming clean interfaces. In the real world
this leads to a faster kernel at the expense of
clarity and comprehensibility in the code. A
change to one small part of the kernel can break
an apparently unrelated part.

Of course the monolithic kernel has a very rich
set of features and has no need for message
passing — components communicate with each
other transparently. A system of dynamically
loaded modules — as now used in Linux and
AtheQS (see Linux Magazine issue 13) —improves
the system further.

Some features have not made it into Linux as an
attempt is made to contain the size and
complexity of the kernel. Nevertheless some code
bloat is inevitable as core functionality grows with
inevitable creeping featurs. A microkernel avoids
this by only implementing the infrastructure

14-2001 LINUX MAGAZINE 85

rCOMMUNITY rFREEWORLD

necessary for other tasks to provide the features
required of a modern OS. This boils down to
resource management (paging policy and
scheduling) and message passing, all other
services can be run from user space - though basic
hardware device support may be needed to
bootstrap the system.

To recap briefly the advantages of a
microkernel. What platform specific code there is,
is often limited to the microkernel making porting
easy. The modularity of the design has the
advantage of making it easier to integrate new
features and upgrades into the OS. Most
processes can run in user space — if one comes
crashing down it will not take the rest of the OS
with it, as would be the case if it were in kernel
space.

A better service

Other designs implemented upon the Mach
microkernel have single servers and thus many of
the disadvantages of a monolithic kernel. The
Hurd is a multi server system. Each server runs as a
Mach Task and provides one of the services of the
OS. They communicate through Mach message
passing. Bugs in a server will not affect the rest of
the OS - so overall stability is improved. Indeed if
a file system server for a mounted partition
crashes it need not take down the whole system.
The partition is unmounted and the server can be
started again with debugging information (using
gdb). Testing new servers means no reboot — nor
is there a need to take down any existing servers.

Amongst multi-server systems the Hurd is
unique for allowing users to replace or add to
virtually all of the system dynamically.
Authentication servers establish the identity of
programs which need to trust each other and the
process server establishes control over system
components by the superuser. No other server has
any special status.

Partition number blues

Linux users are familiar with the hd[a-d][1-n] system of referring to disks and
partitions. Those making the move from LILO to GRUB find a new system of (hdN,n)
with all the disks in order, first the IDE devices, then the SCSI; disks and partitions are
zero indexed. For example (hd0,3) refers to the fourth partition on the first drive.
(hd1,0) refers to the first partition on the second drive — if there is only one IDE drive
then (hd1,0) is on the first SCSI drive, if there are at least two IDE drives then (hd1,0)
is the second IDE drive, regardless of whether it is a master or slave disk on the
primary or secondary controller (Thus Linux might see, for example, hdc1 for the
same disk and partition). This is the way that the BIOS sees the disks.

It is important to become comfortable with the different systems to avoid mistakes
during installation — particularly as Hurd uses a slightly different system, based upon
the BSD slice approach to partitions. In the example of hdc1 (linux) or (hd1,0) (GRUB)
above, Hurd calls it as hd1s1 if it is an IDE drive, however SCSI drives are numbered
according to their SCSI id. Each system exists for a good reason and anyone wanting
to cross-install Hurd from Linux and boot with GRUB will for now, unfortunately, just
have to get used to it.

86 LINUX MAGAZINE| 14 - 2001

A good Mach

Hurd is a set of services which runs upon the
Mach microkernel - originally upon Mach 3 —
with device drivers from Linux 2.0.x

From this was developed GNU Mach, which is
what new users will probably try first. However
for extra flexibility most developers work with
OSKit Mach. Utah’s OSKit for OS construction
with Mach sitting on top and handling virtual
memory management and messaging.

Make it clean

The very modularity of the system — the way it is
split up into individual components — calls for
clear and consistent interfaces to be written at the
start. Responsibilities are clear and the object
oriented (OO) nature of the design means that
code is easier to maintain and develop and new
services easier to write.

Inter-process communication in Mach is based
on the ports concept. A port is a message queue
which can be used as a one-way communication
channel. You also need a port right. This can be a
send right, receive right, or send-once right. With
the appropriate port right, you are allowed to
send messages to the server, receive messages
from it, or send just one single message.

Mach ports are analogous to the ports of
socket-based communication. It does not matter
if the communicating threads are executing on
the same processor, on separate processors in a
multiprocessing environment, or on different
computers on a network. Mach scales up well for
distributed computing.

A fine translation

A translator is a Hurd server which provides the
basic filesystem interface. It sits between the
contents of a file and the user accessing this file.
Translators are just another user process — so can
be run by any user. The only privileges needed are
access rights for the underlying inode to which
the translator is attached. The information about
translators is stored in the inode — many
translators don‘t even require an actual file.

A translator can be provided for the node /ftp,
enabling transparent ftp and such commands as

| ess /ftp/ftp.uu.net/inet/rfc/rfcl097

The flexibility implied by translators can take a
while to sink in. Mount points, symbolic links and
device files are all translators. A running translator
is an Active translator, however powerful handling
of devices and files comes from Passive
translators. A passive translator is one that has
not yet started. As soon as the passive translator is
accessed, it is automatically read out of the inode

FREEWORLDT COMMUNITY-"'l

Info

GNU/Hurd: http://www.gnu.org/software/hurd/

Grub: fto:/lalpha.gnu.org/gnu/grub

Snapshot of Hurd source code: ftp://alpha.gnu.org/gnu/cvs/hurd.tgz

Debian GNU/Hurd: http://www.debian.org/ports/hurd
http://lists.debian.org/ports.htm/

Kernel cousin archives: http://kt.zork.net/debian-hurd/back-issues. htm!

Easy install: http://www.pick.ucam.org/~mcv21/hurd.htm/

A UK Hurd page: http://www.hurd.uklinux.net.html

that many users will get to experiment with
features which will never be available under even
the best monolithic kernels (read Linux). If you
would like to try it out, look out for the report on
our experiences with the new Debian GNU/Hurd
CDs in future articles, or download it now from
debian — there is plenty of good documentation
on the site and at
http://hurd.gnu.org/

X -

Richard Stallman

and an active translator is started on top of it
using the command line that was stored in the
inode. If the active translator is lost a new one will
be started next time the inode is read (the device
is accessed). As it sits on the inode it survives
reboots — there is no need to maintain a
configuration file for example mount points.

For a more comprehensive look at translators
and the other Hurd servers | recommend the
documentation on the GNU Hurd Web site.

Follow the Hurd

Potential kernel hackers may find that there
is much less to learn before starting
coding, due to the modular
construction and cleanly designed
interfaces. As described above,
services can be dynamically
loaded and debugged on
a live system without .
impinging upon other

functionality of the t 1 \"‘)
0s. L

In the info box you will -

find details of mailing lists and other resources.
Do not feel that you have to be able to hack C to
help. Anyone can get involved maintaining web
sites, submitting bug reports or compiling their
favourite applications to run on Hurd.

The ability to dynamically replace the various
system servers may reinforce the impression of a

geek OS, nevertheless Debian’s packaging ensures
i '

14 - 2001{ LINUX MAGAZINE 87
§

