

KNOW HOWQT

JONO BACON

On your marks...
To get started, lets actually look at what we need.
The first thing is fairly obviously Qt itself. You will
also need the various compilers, linkers and
libraries to build your software. This all usually
comes as standard with most modern Linux
distributions. If you have any problems, please
refer to your distribution manual.

The other thing you will need to be familiar
with is C++. Qt software is natively written in
C++, and although there are bindings for various
other languages, I will be focusing on C++ in this
series. If you do not know C++, or would like to
brush up on it, do a search for c++ on
http://www.google.com/ and you should get
plenty of documentation.

Although you do not need anything in
particular to write the code, apart from a text
editor of some description, I would suggest using
an IDE for your development. For these purposes I
will be using KDevelop as it is an excellent IDE for
Qt and KDE development (as well as many other
types of project also).

How Qt works

Qt is a powerful and flexible toolkit, and it is
important to get to grips with some of the
concepts of how Qt works. I will give a quick
overview of the concepts here, but I will cover
certain concepts in more detail as we continue the
series.

Qt contains a number of classes. Each class
does something specific and provides a lot of
functionality. There are a number of classes that

inherit features and functions from other classes,
so you can build up a comprehensive set of
functionality for higher level classes. Qt is
primarily a graphical toolkit, and as such provides
a number of on screen objects such as scroll bars,
buttons, checkboxes etc, called widgets. These
widgets are the primary objects you will use for
user interaction and for the visual look and feel
of your application. Although there are lots of
graphical widgets, there are also a number of
classes for dealing with behind the scenes
processing, network access, data management
etc. Qt provides a number of convenience
classes written to make things such as stacks,
linked lists, tree’s and other such structures
easier to use.

Qt also includes a clever and sophisticated
system for giving your on and off screen objects
functionality. This system is called the Signal and
Slots system. I will be covering this in more detail
later in the series. The basic functionality of the
system is connecting desired functionality to your

GETTING
STARTED

WITH QT
In this issue we will begin taking a look at Qt, and start to write

some programmes using it. Before we get started, we should

take a look at some of the concepts of writing Qt software.

14 · 2001 LINUX MAGAZINE 39

Hello world!

QT

40 LINUX MAGAZINE 14 · 2001

these include files. On line 4 main() begins with
the command line arguments we could process if
we wanted to, we don’t need to on this occasion
though). On line 6 we then see the first part of
our Qt program.

This then creates a QApplication called ‘a’,
which accepts the command line arguments
from main(). Each Qt application must have one
QApplication object created. This class deals with
application wide settings and garbage collection.
Once we have created our QApplication object,
we can then create our text.
Line 8 is where we create a QLabel object called
‘lab’, passing it some information that is useful
when creating the object. The main two
arguments to be familiar with on this line are the
“Hello World!” argument which is the text that
appears on the label, and the third argument,
which is the parent of the label, details in a
moment. As we have only one widget, we can
set the parent argument (the third argument) to
0, and this puts the label in a new window.

The next part of this program is on line 10
where we use the setMainWidget() method to
set the main widget of this application. Although
this sounds obvious, it is quite important as when
the main widget is killed or destroyed, the
application exits. It is not essential to set the
main widget, but most programs do. The next
line in our program is line 11. This line shows the
QLabel widget. It is important to remember that
Qt widgets are not shown by default, and
therefore you must run show() on them,
alternatively other classes and methods
automatically run show() for you. The final line
on line 13 is where you let Qt take over
interaction of the widgets and take control.

Parents and children

OK, so now we are playing the Qt game, lets
discuss what this whole parent and child
malarkey is all about. Parent/Child relationships
are one of the key aspects to GUI programming,
and a concept inherent in Qt. The idea is that you
can have a widget that is a parent, and that there
is another widget that sits on the parent widget
called a child. An example of this would be a
window with 4 buttons in it. The window would
be the parent, and each button would be a child.
This concept of a parent and child relationship is
utilised in virtually every graphical widget in the
Qt toolkit. At this point it is a good idea to point
out that the Qt documentation is wonderful and
discusses using the various classes and provides
lots of useful information. You can find the
documentation by opening up your web browser
and looking at $QTDIR/doc/html/index.html.

Lets take a look at the various ways we can
construct a QLabel like we did in our first
program. The QLabel class documentation tells

objects when you interact with
them. An example would be if
you click on a button, a dialog
box pops up.

Getting going

OK, let us get started on our Qt
coding expedition and resurrect

the traditional Hello World!
program. Type in the following

program into your editor or IDE
and compile it. For a few details

on compiling Qt code, see the
Compiling Qt Programs box.

1 #include <qapplication.h>
2 #include <qlabel.h>
3
4 int main(int argc, char **argv)
5 {
6 QApplication a(argc, argv);
7
8 QLabel lab(“Hello World!”, 0,
“label”, 0);
9
10 a.setMainWidget(&lab);
11 lab.show();
12
13 return a.exec();
14 }

This simple program simply creates a window and
puts Hello World! in it. Let’s take a look at how
this program works:

Lines 1 and 2 include the relevant header files
for the Qt classes we will use. We are using
QAppication and QLabel, so we therefore include

KNOW HOW

The
QPrintDialog

Widget

KNOW HOWQT

14 · 2001 LINUX MAGAZINE 41

create this QLabel on line 16 and use ‘this’ we are
using the QWidget as a parent. The only other
difference is that I set the geometry of the QLabel
on line 17, and I set the Geometry of the
LabWidget object (which is QWidget derived) on
line 26.

On we go next month...

Well that’s all we have time for this month, but
next month I will be looking at some of the other
widgets and layout managers to make your
interfaces more streamlined. Stay tuned folks...

The QTextBrowser Widget displaying a HTML page

Compiling Qt Programs
Compiling Qt programs is similar to compiling
other software using libraries on Linux
machines. It is suggested that you read the
gcc manual and HOWTO’s at
http://www.linuxdoc.org/. Typically you need
to make sure you link with -lqt and other
XFree86 linker flags (these may include -lXext
-lX11).

us there are the following constructors available:

QLabel (QWidget * parent, const char *
name=0, WFlags f=0)
QLabel (const QString & text, QWidget *
parent, const char * name=0, WFlags f=0)
QLabel (QWidget * buddy, const QString &,
QWidget * parent, const char * name=0,
WFlags f=0)

As you can see from the code, I used the second
line from this selection of constructors. This allows
us set the text of the QLabel instead of using
setText() to set it after we create the object. You
can see that the second argument with the
second constructor is the parent of the type
QWidget *. A QWidget is a fundamental class in
Qt that can act as a parent for other items.
Typically the QWidget is used as an area of screen
that can hold other widgets.

An example of using a QWidget as a parent would
be:

1 #include <qapplication.h>
2 #include <qlabel.h>
3
4 class LabWidget : public QWidget
5 {
6 public:
7 LabWidget(QWidget *parent=0,
const char *name=0);
8 };
9
10 LabWidget::LabWidget(QWidget
*parent, const char *name)
11 : QWidget(parent, name)
12 {
13 setMinimumSize(200, 120);
14 setMaximumSize(200, 120);
15
16 QLabel * lab = new QLabel(“Hello
World”, this, “label”, 0);
17 lab->setGeometry(80, 50, 75, 30
);
18 }
19
20 int main(int argc, char **argv)
21 {
22 QApplication a(argc, argv);
23
24 LabWidget myWidg;
25 myWidg.setGeometry(200, 100,
200, 120);
26 a.setMainWidget(&myWidg);
27 myWidg.show();
28 return a.exec();
29 }

In this example the application basically behaves
pretty much the same, although I created a class
called LabWidget. This LabWidget class inherits
from QWidget on line 4, so therefore when we

