
main window in the form of a menu bar. As shown
in figures 1 to 3, Tk arranges the menu bar
according to the relevant styleguide, as appropriate
to the operating system on which the application is
running. For example, the help menu under Linux is
aligned to the right, while under Windows it is left-
aligned, following the other menus. On the
Macintosh the menu bar of the current application
is located at the top of the desktop.

Menus within menus

A menu bar contains a number of sub-menus.
These sub-menus contain the actual entries, such
as commands, radio or check buttons or further
sub-menus. The entries can be attached and
edited with the menu widget methods “add”,
“configure” and “delete”. The example in Listing
1 generates a menu bar and then attaches three
sub-menus.

Menu labels are more important than many
programmers realise. The choice of words and
terminology requires a great deal of thought. On
the one hand there is limited space available (a
maximum of two to three words), on the other
hand descriptions should be very precise and
unambiguous. Instead of text, menus can display
images, as in this help menu (see figure 3).

Many users want to keep their fingers on the
keyboard while they are working, rather than
constantly having to switch to using the mouse.
They open menus using the [Alt]-key and
another letter key, which is often shown as
underlined in menus. In our example this method
has been implemented for the Edit and the Help
menu. The option “-underline position” tells Tk
which letter to underline. This letter is also used
to access the sub-menu. Tk creates the relevant
bindings automatically.

Tearing off menus

Some applications use so-called tear-off menus,

PROGRAMMING TCL/TK

52 LINUX MAGAZINE 14 · 2001

TK À LA CARTE
CARSTEN ZERBST

If a program wants to be friendly to its users then it

ought to be able to speak their language. Localisation

comes as part of Tcl/Tk’s basic package and dynamic

menus make applications intuitive for their users.

User-friendliness through
dynamic menus and L10n

Figure 1: MacOS 9 doesn’t display menus in the respective
window, but always at the top of the screen. Tk keeps to
this convention; even tear-off menus are implemented.

Menus are one of the most important components of
any graphical interface. Hidden behind them, in most
cases, are large chunks of the application logic. This
instalment of our Tcl/Tk series describes how menus
can be generated and which options the toolkit
offers programmers. Another aspect is the
internationalisation and localisation of Tk
applications. All of this is possible within the standard
core of Tcl/Tk, no additional packages are required.

The “menu” command in Tk generates all sorts
of menus, from entire menu bars to sub-menus or
pop-up menus. Like any other widget, menus can
be arranged using the layout managers grid, pack
or place. However, it is better and simpler to attach
the menu bar to a window:

. configure -menu .menu

This example attaches the menu “.menu” to the

that is menus which can be separated from the
main application. A prominent example of this is
the Gimp. By default tearing off is also possible
for Tk menus, however, it can be prevented with
the option “-tearoff 0”.

Context-sensitive menus can make an
application more user-friendly. Depending on the
current environment (the context) they only offer
those commands whose use would be sensible at
the moment. All other commands are only shown
by Tk in grey. This tells the user which commands
are available and which of those he is currently
able to use.

The current state of a menu entry is
determined by the option “-state”. A command
is usually “normal”, but in its “disabled” state it
is greyed out and cannot be selected.

Context-sensitive menus

But how do menus become context-sensitive?
The simplest way is for the program to re-create
them every time they are opened. This is where

the menu widget option “-postcommand
command” is useful: this command is called by
Tk before it opens a menu. Generating a menu
normally takes less than a millisecond, the delay
should therefore not cause any problem. The
individual menu entries are simply created by the
script in the relevant mode. However, this simple
method fails to work with tear-off menus which
are always open and only change their state
when the menu is re-opened from the menu bar.

Pop-up menus can be just as useful as
context-sensitive menus. They are normally
accessed via the right mouse button and provide
the users with important commands in specific
areas of the application which are only relevant
there. The command “tk_popup menu x y” is
used to open a pop-up menu at any point within
an application.

The example in Listing 1 creates an active area
(see also figure 3) in which the right mouse
button opens the pop-up menu. No additional
menu is required for this, the existing Edit menu
is simply re-used.

PROGRAMMINGTCL/TK

14· 2001LINUX MAGAZINE 53

#!/bin/sh
Example of menus with Tk U
exec wish $0 $@
Creating a menu bar
menu .menu
... and linking it with the mainU
window
. configure -menu .menu
The sub-menus
Simple sub-menu
.menu add cascade -label File U
-menu .menu.file
Sub-menu with shortcut <ALT-E>
.menu add cascade -label Edit U
-menu .menu.edit -underline 0
Sub-menu with shortcut <ALT-H>
.menu add cascade -label Help U
-menu .menu.help -underline 0
The File menu

Listing 1: Creating menus with Tk

Figure 2: The menu bar under Windows does not stand
out from the rest of the application if the program does
not have its own background colour. The underlined
letters are used as shortcuts for accessing the menus.

Figure 3: Tk menus under Linux come in the
familiar Motif look – the menu bar has a
raised 3-D effect. The help menu is always at
the right-hand side of the menu bar.

menu .menu.file
... with entries for commands
.menu.file add command -label Open
... and separation
.menu.file add separator
.menu.file add command -label Exit U
-command “exit” -accelerator “^q”
Binding for Exit
bind . <Control-q> exit
The Help menu (not tear-off)
menu .menu.help -tearoff 0
.menu.help add command -bitmap info
The (context-sensitive) Edit menu
menu .menu.edit -postcommand menuEdit
set context normal
The procedure for creating the EditU
menu
proc menuEdit {} {
.menu.edit delete 0 end

.menu.edit add command U
-label “Dependant command” U
-state $::context

.menu.edit add separator

.menu.edit add radiobutton -label On U
-value normal -variable ::context

.menu.edit add radiobutton -label OffU
-value disabled -variable ::context

}
Active area with different cursor
frame .a
grid .a
label .a.b -font {Sans 30 bold} U
-cursor crosshair -text “Active area”
grid .a.b -padx 25 -pady 25
Binding for opening the pop-up menu
bind .a.b <Button-3> {
tk_popup .menu.edit %X %Y

}

Keyboard shortcuts

The more frequently you work with an application
the more likely you are to start wishing for
shortcuts. The pop-up menus we have just
described will help a bit. But rather than fighting
your way through different menus every time, a
shortcut is a much quicker way of getting to where
you want to go.

In order for users to be able to learn these
shortcuts quickly it makes sense to put them next to
the relevant menu entry. This can be done using the
option “-accelerator shortcut”. Programmers must
be careful, however, not to use standard shortcuts
for their own purposes. For example, users expect
[Ctrl]+[q] to exit an application.

Unlike the “-underline” option, the binding for
shortcuts has to be specially created using the
“bind” command. If you have a number of such
commands, it’s also worth having a look at the
powerful virtual events.

Tk multilingual

Applications don’t only display text in menus but
also in many other areas. Since not all users can
necessarily be expected to speak English, interfaces
should be available in several languages. That is
called localisation or L10n. Under Tcl the Msgcat
package is the most suitable for this purpose. It is

part of the normal core of Tcl and will also be used
for system messages in the forthcoming Tcl 8.4.
Msgcat uses catalogues, which contain translations
for different labels or outputs.

Listing 2 shows a simple example of using the
Msgcat package. The translation catalogue for
German must be held in the file “de.msg” (see
Listing 3), the English messages are contained in
“en.msg” (see Listing 4). The example starts off by
setting the desired language (locale) with
“msgcat::mclocale locale”. Locales are described
using country codes according to ISO 639. The user
setting is normally found the environment variable
“LANG”.

The language catalogues have to be loaded next.
This is done with the command “msgcat::mcload
directory”. The specified directory should contain
one file per language with the relevant translation.
The file names consist of the country codes and the
extension “.msg”. These files contain a number of
commands of the type “msgcat::mcset language”
original””translation””.

A catalogue for every language

These files are very easy to create with the special
editor MSGedit. Within the localised application
itself every character string for a message or a
label simply has to be replaced with a call to

PROGRAMMING TCL/TK

54 LINUX MAGAZINE 14 · 2001

#!/bin/sh
Example for the localisation
of Tcl applications U
exec wish $0 $@

package require msgcat

Selecting the system settings
msgcat::mclocale $env(LANG)

Loading the language catalogs
msgcat::mcload [pwd]

Listing 2: Localisation with Tk

Assembling the GUIs
label .l -text [msgcat::mc “Default is %s”U
$env(LANG)]
grid .l
label .l2 -text [msgcat::mc date 10 15]
grid .l2
button .b -text [msgcat::mc “Exit”] -commandU
exit
grid .b -padx 5 -pady 5

wm geometry . 220x75
wm title . “Deutsch”
#wm title . “English”

Listing 3: German
messages

msgcat::mcset de “Default is
%s” U
“Systemeinstellung ist %s”
msgcat::mcset de date U
“Beispieldatum %2\$i.%1\$i
(Tag, Monat)”
msgcat::mcset de “Exit”
“Beenden”

Figure 4: Another aspect of localisation is that in US English the month comes before
the day, but the reverse is true for UK English, where the day comes before the month.

“[msgcat::mc “original”]”. The command returns
the translation from the specified catalogue. If no
translation is found “msgcat:mc” returns the
original character string so that the application
remains useable. The catalogue for the original
language is therefore almost empty (see Listing 4).

However, in many cases this is not enough:
messages often consist of a fixed and a dynamic
part. Translations can therefore contain formatting
commands, even to the point where the order of
the dynamic components can differ between
languages. In the example this feature is used to
output the date in the right order, once as Day,
Month and once as Month, Day (see figure 4).

Depending on the environment variable “LANG”
the application starts with an English (“en”) or a
German interface (“de”). In the tcsh this is set using
“setenv LANG en”, in bash with “LANG=en”. An
export may also be required.

The features introduced here allow you to create
pretty user-friendly interfaces. In addition, there
are, for instance, help balloons, also called tooltips.
How to create these is described at the purl.org
website, the BWidgets already contain an
appropriate widget.

After this excursion to the surface the next article
in our Tcl/Tk series will describe how you can create
visualisations with VTK.

PROGRAMMINGTCL/TK

14· 2001LINUX MAGAZINE 55

Listing 4: English
catalogue

msgcat::mcset en date “DateU
%i.%i (month, day)”

The author

Carsten Zerbst is a member of
staff at Hamburg-Harburg
Technical University. Apart
from researching service
integration on board ships, he
investigates Tcl in all its forms.
He is looking for new tasks in a
Unix/Linux environment.

Despite the summer break, a lot has happened since the last
instalment of our Tcl/Tk series. OSCON has just finished. Naturally
this conference also had a Tcl track. The papers for the presentations
can be found at the O’Reilly FTP site. Among the topics covered was
spoken language as application input and output. The focus,
however, was the integration of Tcl in applications for ECAD, one of
the Tcl domains.

Tcl distribution from Active State
Just in time for OSCON Active State have published their own Tcl
distribution. The package, a full 31MB when unpacked, contains
important extensions along with the actual interpreter, for example
[incr Tcl], TclX, Expect, Tcllib and Tkcon. Furthermore, the package is
supplied with an installation program and is currently likely to be the
simplest way to an all-inclusive installation of Tcl/Tk.

You can, of course, still get the individual components free on the
net. Special mention must go to Tcllib and the BWidgets. Both are
available from Sourceforge in a joint project. Tcllib consists of several
modules for everyday problems, such as Base64 encoding, MIME
handling or POP3 and FTP access. Like the BWidgets, Tcllib is written
in Tcl itself and does not require compilation.

The BWidgets are a useful collection of widgets that are normally
missing in Tk (see figure 5). All new widgets have been built using
existing Tk-Widgets (so-called mega-widgets). The package
contains, among other things, a combobox, a tree-widget, a
notebook widget and a spinbox. It also supports drag & drop.

Great plans
The Tcl core team is currently discussing the integration of new
widgets and additional options in Tk. In many cases implementations

already exist. Another, very controversial discussion deals with the
integration of [incr Tcl] into normal Tcl.

A further topic under discussion is theming support for Tk; in this
respect Tk is well behind Gtk or Qt. Anyone still wanting to use
themes with Tcl at the moment can resort to Peter Baum’s Gnocl
which allows the use of Gtk and Gnome widgets.

PDA-capable applications
Alexander Caldwell has written a small browser and an email client
especially for the Linux PDA Agenda. Both applications are geared
towards the fairly limited capabilities of PDAs. The use of interpreter
languages makes a lot of sense especially in this environment:
instead of several applications running, just one interpreter at
runtime is sufficient. Scripts can also be stored in a compressed
format, with scripts normally being able to be compressed
significantly more than binary programs. In Etlinux Tcl scripts even
control the entire boot process.

News from the Tcl world

Figure 5: BWidgets contain new widgets for Tk. Tree, Paned
Window, Combobox, Notebook and Spinbox are standard
features of many modern interfaces.

Info
Country codes according to ISO 639: http://www.oasis-open.org/cover/iso639a.html
MSGedit: http://www.tu-harburg.de/~skfcz/tcltk.html
Balloon help: http://purl.org/thecliff/tcl/wiki/534.html
Tcllib, BWidgets: http://sourceforge.net/projects/tcllib/
OSCON-Tcl-Papers: ftp://ftp.oreilly.com/pub/conference/os2001/tcl_papers
Gnocl: http://www.dr-baum.net/gnocl/
Agenda web browser: http://www.psnw.com/~alcald/tiny_tcl_web_browser.html
Etlinux: http://www.etlinux.org/

