
BEGINNERS

70 LINUX MAGAZINE Issue 15 • 2001

The Answer Girl

EGALITARIANISM

must be emphasised at this point that the use of a
specific tool for a specific task always depends on
one’s personal tastes. If you prefer Python or Tcl,
that’s perfectly all right.

Unfortunately, Perl also has some drawbacks.
Although, or more precisely because, there is masses
of documentation – with manpages and tutorials on
the Web as well as paper books – finding help on a
specific task is a highly time-consuming job. Since
Perl also wants to be “human”, by allowing several
notations for a syntax that is normally fixed in other
programming languages, writing Perl code looks
simpler at first glance, but the reading is then made
more difficult if a Perl script originates from people
with different Perl customs. Of course this versatility
does not make learning Perl any easier.

Perls in action
All this lamentation is useless if the release date for
the new Web site is imminent. So turn to your

The Answer Girl
The fact that the world of everyday computing,
even under Linux, is often good for surprises, is a
bit of a truism: Time and again things don’t work,
or at least not as they’re supposed to. The
Answer-Girl in Linux Magazine shows how to deal
elegantly with such little problems.

At last, the commissioned Web site is finished.
A sigh of relief in the office is closely followed
by the sobering realisation that the Web

designer has been working under Windows and has
not been all that careful with upper and lower case
notation of filenames, because on her Microsoft test
computer index.html, Index.html and INDEX.HTML
are all identical notations for a single file. Unix file
systems on the other hand, such as the ones mainly
used under Linux, ext2fs and ReiserFS, insist that a
capital A and a lower case a are completely different
things – even in file names.

The site’s relaunch site still has to take place on
time, and who wants to sit down and correct all the
wrong A HREF details by hand across several dozen
files? So the question arises, as to how the whole
deal can be dealt with automatically?

Defining the task
The task is by no means trivial because there is quite
a bit to do. The first thing is to find all the references,
search out all those which relate to local files, extract
the corresponding filenames together with path and
check whether there is a file of this name at the
appropriate place in the file system.

If the designations of the file in the link and in the
file system match, we need do nothing. If they are
completely different, the best thing to do is to add a
comment, to the effect that this point will need re-
processing by hand. If the details differ only in the
upper and lower case lettering, we can adapt the
filename in the link details.

This does not look like something that can be
solved simply with a couple of command line tools
and a few pipes. Instead we will have to stick out
our necks, do it properly and write a little script.

A shell script, a sed-script, an awk-script... – there
are a number of options – but so that this article
does not become overlong, let’s agree on a Perl
script. This is a good idea anyway as Perl’s regular
expressions lighten the load a bit when it comes to
search and replace operations. This would also work
with sed, but since we have to check the presence of
the files in the file system, sed could only cope with
the aid of other shell tools. Perl has advantages here,
since as a “real” programming language it also has
functions for accessing the file system and is faster
than a shell script.

Awk comes into its own especially when working
with columns, which in this case we do not want. It

Have your Web links

got split ends, simply

because upper and

lower case notation

was ignored when

they were produced?

Patricia Jung shows

us how to resolve

this problem using a

Perl script

BEGINNERS

71LINUX MAGAZINEIssue 15 • 2001

What does perl -w do?
-w prints warnings about dubious constructs, such as variable names that are
mentioned only once; scalar variables that are used before being set; redefined
subroutines; references to undefined file handles or file handles opened read-
only that you are attempting to write on; values used as numbers that don’t
look like numbers; using an array as though it were a scalar; if your subroutines
are nested more than 100 deep; and innumerable other things.

favourite editor and create a new file. Let’s call it,
cgks as an abbreviation for “change upper to lower
case notation” – who would want to call up a
program starting with an “A” – as in “Alter”?.

As in every script, the first line comes easily: It
consists of a special comment, stating which
interpreter is to do its job here. Using which perl, we
can find out in which path the Perl interpreter is
located (provided it is installed and the corresponding
directory is entered in the search path).
Then we should have

#!/usr/bin/perl

sitting there. When developing programs it makes life
easier if the interpreter points out the snares a bit
more, rather than merely griping about real syntax
errors. The manpage should come up with some
information on this. First, though, man perl explains
to us that the Perl Manual “is split up to make
accessing individual sections easier”, which are
reached as special manpages.

man perlrun # Perl execution and options
manpage

looks for the section we need, in order to find out
more about options which make debugging easier.
As a matter of fact, man perlrun explains an option
-w (as in “warn”), which appears suitable for our
protection.

Simply take everything
Now we want to edit lots of files, ideally, all those in
the current directory. Yet this is something someone
else should have done before us at some point. There
are many Perl scripts in this world and on the Web
but those with comprehensible documentation, on
the other hand, are much scarcer. Searching the Web
we find a script that converts international character
entities in all HTML files in the current directory into
real ISO characters (Figure 1) and with

$^I = “.bak”;

in front, it even makes a backup file with the ending
.bak.

This last feature is one we first mark with a # at
the start of the line so that the interpreter ignores it.
By decommenting the line, this produces the nice
side effect that in the meantime we are not even
writing any files, but are being shown the result on
the standard output. In any case, it’s much better for
testing!

In Perl, simple (scalar) variables always begin with a
dollar symbol, and a funny variable such as $^I must
simply be something pre-defined. As a matter of fact
man perlvar explains that this means the Inplace

editing, thus the editing of a file which is currently
being edited is switched on or off.
And the next line,

@ARGV = <*.html>;

looks like a pre-defined variable and an array because
of the preceding @, thus a one-dimensional or
multidimensional value field. @ARGV, the “Argument
vector”, is one-dimensional and according to the
perlvar manpage contains the command line
arguments of the script. We can use this to define
within the program which arguments it should
actually be called up with – obviously with all files
ending in .html.

Perl makes provisions for the argument files to be
opened and to enable access, via the handle <>, to
the data contained therein. So all we have to do is
measure off the content line by line, until there are
no more lines:

while($line = <>) { }

This is clearly a loop, which will run continuously as
long as the condition in the round brackets applies. In
Perl, it makes no difference whether we declare the
variable $line needed for buffering $line first, with
the my() function, or only allow it to arise where we
need it. It’s only in connection with object-oriented
Perl programming that my() really becomes
important, although it does no harm to get used to
this right from the start. If we again output the
content of $line inside the curly brackets with

print $line;

our script should simply output the content of the
.html files in the current directory line by line. We can
test this in a directory that contains (not too many)
HTML files. Since cgks does not presumably lie in the
search path, we also state the path (perhaps with the
dot as an abbreviation for the current directory).

pjung@chekov:~/answergirl$./cgks
bash: ./cgks: No such file or directory

No file or directory of this name? There’s something

BEGINNERS

72 LINUX MAGAZINE Issue 15 • 2001

A small Perl script

fishy going on here. We have in fact forgotten to
assign ourselves executability rights with chmod
u+x cgks.

Pattern recognition
Since the script outputs the file content so nicely for
us, we can now look for the links. Perl has the nice
construct of “data to be edited by default”, the data
hiding behind the variable $_ . When you are looking
for something, there is no need even to state where
to look, as long as you mean the content of $_ . We
want to edit the content of $line and therefore file it
with

$_ = $line;

in the default. Are there links in this line? If so, follow
them to an <A HREF= within double quotes (“). The
end is shown by a >. (So as not to complicate the
script unnecessarily, we shall assume that there are
no line breaks in a character string). As a regular
expression this looks as follows:

We have to escape the double quotes with the
backslash, since Perl uses these to delimit string
contents. In round brackets, we note the reference
(either a URL or a local file specification), which is a
sequence of characters of any length or .* for short.

Unfortunately, regular expressions have the habit
of wanting to cover as much as possible. If, after the
HREF, several “> appear on the line, the above regexp
will save everything in the round brackets until the
last occurrence. We wean it off this greedy habit by
placing the one-time or no-times character ? after .*:

In order to look for it in the content of $_ , we make
use of the ‘match’ operator m/pattern/. We can tell
that an href can also be written in lower case
(“case-insensitive search”) by the i-flag. We also want
to collect all the links occurring on the line and to do
so we use the flag g (global):

@files = m// gi;

We store whatever ends up in the round brackets in
an array variable named @files and go through it step
by step:

foreach $file (@files){ }

To do this we file the respective current reference in
the variable $file, which as “run variable” of the
foreach loop lands automatically in $_ . In order to
change something solely when it is a reference to a

local file, we check that its content does not begin
with a protocol such as ftp or http (other protocols
such as gopher can be ignored):

if (! /(ftp|http):\/\//i){ }

The m of Match operator can be left out, and “ftp://
or http://” can be shortened to (ftp|http)://. In this
case, the pipe symbol | serves as a logical Or. Since
the forward slashes are already framing the pattern,
we must escape them, and in order to ignore upper
and lower case notation, we make use of the i-flag of
the match operator. Lastly, the exclamation mark
ensures that the condition is met precisely when no
match is found.

Local only

If there is no protocol hiding in the reference, we try
to open the file:

open(FILE, $file);

The first argument, FILE, is a so-called handle, so is a
stand-in for the file whose name is hiding in $file. If
we get the file open, we have nothing to correct for
this link and can close the file again:

close FILE;

If, on the other hand, the opening goes wrong...

if (! open(FILE, $file)){ }

...we must try to find out the right file name. If that

BEGINNERS

73LINUX MAGAZINEIssue 15 • 2001

A HREF In order to use a hyperlink on a Web site to point to another file or
Internet resource, you have to write an anchor into the text. This is supplemented
by the hyperreference, which states where the link is pointing, for example A
HREF=”http://www.linux-magazine.co.uk/”. To prevent the reader of the page
from seeing this specification in the text, it is placed in pointed brackets (). This is followed by the text, which
should be clicked on in order to get to the reference. Last of all comes the end
tag , with which the anchor is completed: <A HREF=”http://www.linux-
magazine.co.uk/”>Linux Magazine.

Path The road that paves the way, along directories, to a file. Absolute paths
begin at the root point of the file system indicated by /.

Pipe A pipe through which the output of a command line program is
transmitted. The end of the pipe serves as input for a second tool. Symbolised by
a vertical stroke | : command1 | command2.

Regular expressions Option used by various standard Unix tools to express
patterns. A dot stands for any symbol you like or a letter for itself. If an asterisk
follows, whatever is covered by the preceding pattern can occur any number of
times, or even not at all. A question mark on the other hand means that
whatever it relates to occurs precisely no times, or once.

Python An object-oriented script language.

Script language Programs written in script languages do not have to be
separately compiled, but can be executed with an interpreter direct from the
source code. Often (in Perl for example) the interpreter compiles an internal
binary program to increase the speed of execution, although users will not
usually notice anything in normal circumstances. Since there is no need to call up
a compiler, interpreted languages are especially suitable for small programs,
which are quickly jotted down to solve a problem and are not intended to be
used by third parties.

Tcl A script language which is usually used in connection with the GUI toolkit Tk
for writing graphical applications. It can also be used without Tk.

Search path If one enters a command, the shell searches in the directories saved
in the environment variable PATH, in sequence, for an executable file of the same
name. The first find is used; if the shell finds nothing, it outputs the error
message command not found, even if the command exists elsewhere in the file
system.

in the link specification starts with a / , as absolute
pathname it does not relate to the root directory of
the file system but to the corresponding document
root on the Web server. We must first pin down the
directory in a variable, which serves as the start
directory for the files on the Web site:

$rootDir = “/home/pjung/LM/LM1001/answergirl”;

This circumstance makes our task a bit harder: To find
a file specified in the link, which begins with /, it’s
best to look for it, not in /, but in $rootDir. If there is
anything to correct though, $rootDir/corrected_name
must not be written back into the link, but only
/corrected_name.

So what could be more obvious than saving the
corrected name and the prefix we need to find the
file in the file system separately?

If one combines the contents of both variables,
$prefix and $corrfil with the dot operator . , we
obtain the file details made to measure for the file
system. If we take only $corrfil, we have the
specification matching the link. So we first write a / in
the variable intended to contain the corrected link:

$corrfil = “/”;

We also note the root directory as prefix:

$prefix = $rootdir;

Using this preparation for the later combination in
the corrected file name, we can do without the slash
at the beginning (^) of the link details save in $file. In
order to formulate the condition under which the
$corrfil and $prefix, as just written, should be set we
therefore do not use the match but the substitute
operator s. We simply tell the script: “If, at the start
of $file, you can replace a / by nothing, set $prefix
and $corrfil as just discussed”.

Unfortunately, / is another case for the escape
character. Luckily there is also an option of
separating the patterns to be searched for and
replaced from each other, not only by /, but also by
other special characters. For example, take the
dollar sign. This turns “Search / at start of string,
and replace it with nothing” into not so much an
escape orgy, but rather a simple s$^/$$. In order
to make this replacement directly in the variable
$file, we say

$file =~ s$^/$$;

Formulated as a condition, this looks as follows:

if ($file =~ s$^/$$){ }

If the link was not an absolute one, $corrfil remains

empty. In the prefix the dot is saved as a stand-in for
the current directory, together with separator slash:

else {
$prefix = “./”;
}

Bit by bit
If the link is ever broken, this can be due to the file
name itself or else to a directory specified in the path.
Consequently, we must swallow the bitter pill and
check every component separated by / from root to
tip. To do this, we divide the content of $file, which

BEGINNERS

74 LINUX MAGAZINE Issue 15 • 2001

cgks as a whole
#!/usr/bin/perl -w

$^I = “.bak”;
@ARGV = <*.html>;

$rootDir = “/home/pjung/LM/LM1001/answergirl”;

while ($line = <>){
$_ = $line;
@files = m//ig;
foreach $file (@files){
$corrfil = “”;
if (! /(ftp|http):\/\//i){
if (! open(FILE, $file)){
if ($file =~ s$^/$$){
$prefix = $rootDir;
$corrfil = “/”;

} else {
$prefix = “./”;

}
@parts = split(/\//, $file);
foreach $part (@parts){

if ($part eq “.” || $part eq “..”){
$corrfil .= $part . “/” ;

} else {
opendir (DIR, $prefix . $corrfil) || last ;
@selection = grep (/^$part$/i , readdir(DIR));
closedir(DIR);
if ($#selection < 0){
$corrfil = (“<!-- “ . $file . “ not found! -->”);
last;

} elsif ($#selection > 0){
$corrfil = (“<!-- “ . $file . “ not clear! -->”);
last;

} else {
$corrfil .= $selection[0];

}
$corrfil .= “/”;

}
}
$corrfil =~ s+/$++;
$line =~ s+$file+$corrfil+;

}
close FILE;

}
}
print $line;
}

may have been robbed of a leading slash, at the /
points into little bits and save them in the array
@parts:

@parts = split(/\//, $file);

The split() function needs two arguments: which
string it should chop up, and the separator. Instead of
simply specifying a delimiter, the match operator
comes into play at this point. Between its two /
wings, we set the slash / separating the directories,

and so that this cannot be confused with the right
wing / , a \ comes before it.

We now take a close look at each particle in
succession:

foreach $part (@parts){ }

If the path component in $part is a dot for the
current or (||) double dots for the superior directory,
we do not need to check any notation and add the
content of $part to the string already in $corrfil:

if ($part eq “.” || $part eq ”..”){
$corrfil .= $part . “/” ;
}

Perl has two equality operators: one for numeric
values and one for character strings. The latter is
called eq (“equal”). $corrfil .= $part;

$corrfil = $corrfil . $part;

With the appendix operator for character strings, the
dot, we also insert a slash as directory separator.

On the other hand if we have a real file or
directory name sitting in $part, there is more to be
done. First, we try to verify what has been in $corrfil
until now: With $prefix in front, we are dealing with
a directory which needs to be opened:

opendir (DIR, $prefix . $corrfil);

We will close it later using closedir(DIR);. But if we
do not manage to open it, we can give up
immediately and the stop processing the @parts:

opendir (DIR, $prefix . $corrfil) || last ;

last leaves the active loop, so that we can continue
with processing the next $file. If, on the other hand,
we did open the directory $prefix . $corrfil and were
able to “install” the handler DIR, it is best to use

readdir(DIR);

to read out all the files in it. Is there a file or directory
in there with the name which is saved in $part? On
the shell we would use the grep command for this –
and neatly enough, it’s the same in Perl:

grep (/$part/i , readdir(DIR));

The pattern here is surrounded by the match
operator – and of course the i-option must be there
too, since the upper/lower case notation of the actual
file can be completely different from $part.

However, we have left one thing out: grep also
finds matches in this version when the content of

BEGINNERS

75LINUX MAGAZINEIssue 15 • 2001

Debriefing
There are always more elegant ways of knocking
together a script. For example a quicker variant for
large quantities of data could be written which
remembers each directory checked, so that it does
not have to look at each directory for each link
again.

Far more critical for deployment is the fact that
the proposed program then gives up if the HTML
anchor A HREF and the link source are on different
lines. The alternative was to either take this
handicap in stride or build in even more complexity,
especially in the regular expressions.

Those who are only occasional users of Perl,
however, will not be familiar with the fact that in
the Comprehensive Perl Archive Network (or CPAN),
there are any number of modules stored which, like
similar libraries to those for C, C++ or Java, contain
untold amounts of functions for all possible and
impossible areas of use.

In the case of our script, we could have saved
ourselves the work with the regular expressions, for
the tedious recognition of links, if we had used the
HTML::Parser-Module which is already installed by
default in many distributions (in SuSE in the packet
perl-HTML-Parser; in Caldera in perl-modules).

The major drawback with this module is that we
are moving in object-oriented Perl areas and could
thus be struggling with the problem of what a
parser is. For Perl novices and programming
beginners this is presumably too ambitious a project.

$corrfil =~ s+/$++;

Uh oh, we nearly forgot to correct the $line read out
from the file, by replacing the old link $file by the
corrected output $corrfil...

$line =~ s+$file+$corrfil+;

... and last of all, of course, print it:

print $line;

Now the great moment approaches: Off to the test
directory and let the script loose on the files in there
without additional parameters, but perhaps better
“piped” by less. Looking good? Then we’ll just
quickly remove the comment symbol from the line

$^I = “.bak”;

and already cgks is filing the converted files under
their old names, with the original version as a backup
file with the ending .bak to allow for a comparison.

$part is only a component of an existing file name or
directory name. In this case the match must be
specified precisely: We state it inclusive of beginning
(^) and end ($) and save the result in an auxiliary
array:

@selection = grep (/^$part$/i , readdirU
(DIR));

If @selection now contains nothing – not even a
zeroed element – we cannot create a corrected
version of the link and are misusing $corrfil for an
HTML comment which says that $file could not be
found. It continues, with the aid of last at the start of
the loop, with any subsequent element of @files:

if ($#selection < 0){
$corrfil = (“<!-- “ . $file . “ not found!U
-->”);
last;
}

Perl is endowed with a wealth of funny special
character combinations, which provide you with
some involuntary memory training. If one pinches the
@ from an array and replaces it with a $#, one
obtains ($) a scalar variable, in which (#) the number
of array members is saved.

If the yield saved in @selection was a bit too
successful (we recall that directory and Directory can
exist side by side on Unix systems without any
problem), we add $corrfil to a comment which says
that there are several options:

elsif ($#selection > 0){
$corrfil = (“<!— “ . $file . “ not clear!U
—>”);
last;
}

Only if we find precisely one variant can we attach
the zeroed element from @selection to $corrfil:

else {
$corrfil .= $selection[0];
}

There is still a trailing slash to be attached, in order to
prepare $corrfil for new sub-directory levels. To blsd –
if $part now contained the filename, this too has a
slash at the end, although it goes no further now.
Nevertheless, despite how far as we have come with
our script it’s still only a script for ironing out a few
upper/lower case notation errors – so we are going to
take the liberty of an evil hack: We replace the slash
at the end of $corrfil with nothing. And because it’s
so nice, we use the plus as separator for the
substitute operator:

