PROGRAMMING

C: Part 2

GUAGE OF THE C

A language so
synonymous with
computing history and
Unix it's very name is
the epitome of the elite.
These articles for the
beginner by Steven
Godwin, teach you the
fundamentals of ‘ANSI
C', as well as providing

we said a character has size 1 with a signed range
of -128 to +127 and an unsigned range of 0 to
128. The unsigned range should have read 0 to 255

First a correction from last months article. In table 1

Switched on Bach

The switch statement is a polite way of writing twenty
‘if-else if" statements. It will evaluate its given
expression and, depending on the result, will execute
a single specific case statement. Should none of given
cases match our result we can (optionally) supply a
default case. If the result does not match, and there is
no default case, nothing happens and code continues
executing the next line after the switch statement.
Before this paragraph, you may have written:

else if (iNunber == 1)
printf(“one”);

el se
printf(“Not a binary digit");

But don’t write that! Write this!

swi tch(i Number)

interest snippets from

under the hood of the " {IMrber == O)

printf(“zero”);

compiler.

{

case 0:
printf(“zero”);
br eak;

case 1:
printf(“one”);
break;

defaul t:
printf(“Not a binary digit");
br eak;

}

In all cases (pun intended!) the same expression

Express Yourself

One of Denis Richie's tenets for ‘C’, was an ‘economy of
expression’. Whilst this is true, the ‘rich set of operators’ he also
endowed it with can provide hours of fun for the bored
programmer!

An expression consists of a number of terms that are evaluated
when the program is run. Each term should be of the same type (int
or float, say), but can originate from anywhere — there is no
distinction between an integer variable or an integer constant. Or,
for that matter, a function which returns an integer! So while an
expression like,

b * c

is both valid and usual, ‘b’ could be a function that returns an ‘int’,
allowing:

a = CetNunEntries() * c;

Saving temporary variables for you, and reduced processing for the
computer at run-time.

Also, remember the function ‘LeaveGap’'? The input parameter
was an ‘int’. So an expression of type ‘int" would work in the place
of an integer constant. This allows code like,

LeaveGap(b*c);
Or
LeaveGap(Get NunEntries() * c);

And, as if to complicate matters further,
LeaveGap(a = GetNumEntries() * c);

If the function returns a void, it doesn’t actually return anything, so
you can not assign it to a variable.

a = Banner(); /* ERROR Banner returns a void */
Banner () ; /* CORRECT: void functions can
only be called like this */

Table below presents the basic of set of expressions used in C. This
is not a complete list, just enough to get you out of trouble; but not
so many as to get you in! The term ‘ident’ indicates where a
variable should be, whereas ‘exp’ can be replaced by a variable, a
constant number, a function (with the appropriate return type) or
(recursively speaking) another expression. It is this recursive nature
of applying expressions in code that can make ‘C’ very — how shall |
put politely — illegible!

It is very possible, and easy, to include expressions inside expressions
inside expressions. For example, to make sure the compiler generates
code to evaluate them in the correct order, you should use the
brackets ‘(" and *)". In future articles we'll look at how ‘C’ decides
which order in to evaluate the expressions in. It is called precedence,
and helps remove the unwanted clutter of brackets. However, if you
need to know the precedence before you can understand the code it's
too complex, and needs simplifying with brackets or separate lines!

a LINUX MAGAZINE ' Issue 15 * 2001

-exp
++ident

ident++

--ident
ident--
lexp

~exp
exp * exp

exp / exp
exp % exp

exp + exp

exp - exp
exp >> exp

exp << exp

exp < exp
exp > exp
exp <= exp

exp >= exp

exp == exp

exp = exp
exp & exp

exp A exp

Unary minus
Pre-increment.

Post-increment.

Pre-decrement.
Post-decrement.
Logical not

Bitwise not. (Ones
complement)
Multiplication

Division
Modulus
(remainder)
Addition
Subtraction
Bitshift to right.

Bitshift to left.

Less than
Greater than
Less than,

or equal
Greater than,
or equal

Is equal to

Not equal to
Bitwise And

Bitwise Exclusive

Turns 4, into -4.

Increments the variable by 1, then uses that value
as the expression.

a=1;

b=++3;

/* Here, a=2, and b=2 */

Uses the value of the variable, and then increments
it.

a=1;

b=a++;

/* Here, a=2, and b=1 */

As pre-increment, but subtracts one.

Got the idea yet?!

Turns a zero into a one, and any non-zero into a
zero. 'C’ concept of true, is anything non-zero,
which is why code like,

if (x 1= 0)
is often written
if (x)

Flips each bit, turning 12 (1100) into -13
(1111111111110011)

Despite 'C" low-level tedendancy’s, there is no carry
and no overflow with any mathematical operation.

10%3 is 1, for example.

Only makes sense for integers. 8>>1 = 4.
Traditional a fast way of performing a divide by 2
(or multiple), although most modern compilers will
optimise to this automatically.

Similar to bitshift right, except this is akin to
multiple. One interesting use is '1<<x’, where 'x" is
a bit number (0 to 31). The result is a number with
only bit ‘X" set. 1<<10 = 1024

Evaluates to a 1 or O (like all similar operations)

Evaluates to a 1 or 0. 'C" uses the double equals
to differentiate between equality and assignment
since both can occur in places marked for
‘expressions’. As this is one of the more common
typos in ‘C" it is preferable to write ‘if (0 == iNum)’
instead of 'if (iNum == 0)'. This way, should you
accidentally omit one of equals signs, the case of
'if (0 = iNum)" will become invalid since zero can
never be assigned to anything. On the other hand,
‘if (iNum = 0)" means assign 0 to iNum, and
evaluate (to 0 - i.e. false). Therefore the ‘if branch
never gets called.

Evaluates toa 1 or 0

Compare each bit, and only set the equivalent bit
should both be set. E.g.. 1&2=0. 3&1=1. Used for
masking flags to see which are set.

Compare each bit, and only set the equivalent bit

Or

exp lexp | Bitwise Or

exp & exp | Logical And

exp llexp Logical Or
expl ? exp2 Ternary, or
: exp3 conditional
ident=exp | Assignment
ident+=exp | Add, then assign
ident-=exp Subtract, then
assign
ident*=exp | Multiple, then
assign
ident/=exp | Divide, then assign
ident%=exp Modulus,
then assign
ident>>=exp Bitshift right,
then assign
ident<<=exp Bitshift left,
then assign
ident&=exp Bitwise And,
then assign
identA=exp | Exclusive Or,
then assign
ident |= exp | Bitwise Or,
then assign

PROGRAMMING

if both differ. From the truth table:
QA=)
A =1
1A0=1
12471 =0
Very useful for flipping bits; X1 (swaps the least
significant bit). It is also bi-directional. y=xA73.
yA73=x
Compare each bit, and set the equivalent bit if
either is set. E.g.. 112=3. 3| 1=3. Used for setting
flags.
Evaluates to a 1 if both expressions are non-zero.
Otherwise, it's a 0.
Evaluates to a 1 if either expression is non-zero.
Evaluates to exp2 if exp1 is non-zero, otherwise its
exp3. Similar to an 'if’. But because this is an
expression it can used in places where the ‘if' (a
statement) can not (i.e. as a parameter to a
function), and since it gets evaluated you can write
code such as:

a=x==07?1:2;
instead of

if (x==0)

a=1;
else
a=2,

Copy the value of exp into the variable. You can
also link assignments, e.g. x=y=z. This is because
‘y=z"is an ‘exp’, and ‘x=exp'.

See also 'Is equal to’
The ‘? then assign’ expressions are a very usable
feature of ‘C". From the programmers point of
view, it saves typing
iCount = iCount + iNum;
since you only need to type
iCount += iNum;
From the computer’s point of view, it only needs to
find the memory location of ‘iCount’ once. Not
much saving here, you might say, but if ‘iCount’
was a complex expression the savings would
certainly mount up.
Note:

iCount +=1;
is equivalent to

++icount; not iCount++;
Since the latter must retain the original value of
iCount to evalue the expression correctly.

expl,exp2 | Multiple evaluation This evaluates both expressions, but does so as

sizeof(ident) Size of type

Issue 15 ¢ 2001

separate entities. It this is used recursively within
another expression (i.e. x = exp1,exp2), then x is
assigned with the value of exp1.

Calculates the size of the variable given, in bytes.
Can be used to validate the sizes of variables
shown in table 1. The evaluation of this expression
is done at compile-time.

LINUX MAGAZINE

PROGRAMMING

‘C' is a free-form language, meaning that the layout is fairly unimportant.
Whitespace (tabs, spaces and newlines) can appear anywhere within the source
(except strings) and compiler will blissfully continue without giving it a second look!

Both pieces of code that follow compile identically.

i Average=i Total /i El enents;

i Average = iTotal
| iElements

This allows you to indent your code in a manner that is meaningful to you. There
are a number of styles and guidelines available on the web. None of them are
‘right’, in the same way there is no ‘right’ text editor! Avoid holy wars - find a
style you like and stick to it. If you are working in a code shop, it is likely they will
dictate style guidelines for you to follow. If you are maintaining code, then adopt
the style of the original author.

I
C Dialects

For a language that is intended to be portable, there are a number of different
versions. It is useful to know they exist, especially if you plan on writing code for
more than one platform.

K&R

The original. Rarely used nowadays.

ANSI C

The most common, and focus of this article. GCC is largely complaint with ANSI
C.

C99

A recently ratified update to ANSI C. This version supports single comments (a la
C++) and dynamically sized arrays.

Small C

A subset of ANSI C.

Objective C

A superset of ANSI C, incorporating object orientation and message passing.

This article (and most code in circulation) conforms to the ANSI C standard.
However, depending on the application, some code will use specific libraries that
are not covered here in any depth. Examples of the more common libraries are
curses, sockets and X. None of the functions used are part of the ANSI C
standard, but because of the design of the language, such libraries can be added
at any time (even after the compiler has been written and shipped) without
breaking existing code. These extensions usually ship with (at least) one header
file, and one library file.

Also (as if to complicate matters), most compilers implement a number of
extensions. These are features of the language that are not included in the
standard, but added because the compiler programmers thought it was ‘a good
idea’. |, personally, disagree with them. They encourage non-standard, non-
portable, code and tempt the unwary into bad habits, since the feature may not
be implemented on the next platform (or even version of the compiler) they use.
GCC, for example, supports nested .

a LINUX MAGAZINE . Issue 15 * 2001

(iNumber) is compared, allowing the compiler to do
more optimisations, the reader to gain a greater
understanding, and the programmer less chance of
making a mistake!

In this example, the order in which the cases
appear is of no consequence. The default need not
appear at the bottom, either, it's just a convention.
However, this is not always the case (no pun
intended!).

Break On Through

The break statement above appears innocuously
enough. It has a simple property, but with some nasty
side effects (which we will come to later). Basically, it
causes the execution to jump out of the current
statement, in this case the switch statement. If break
is omitted, execution continues with the next
statement in the switch — even if it is not part of the
same case.

swi tch(i Nurber)

{

case 0:
printf(“zero”);

case 1:
printf(“one or zero”");
br eak;

case 2:

case 3
printf(“two or three”);
br eak;

}

As you see, case 0 ‘drops through' to case 1 because
there is no break to stop it. Similarly, case 2 drops
through to case 3 for the same reason (it is not
necessary to have any code associated with a
particular case).

So, what is the price to pay for this rather groovy
statement? Well, it can only switch on constant
cases. That is, the value after the word ‘case’ must be
constant: a number or a single character (represented
with ‘A’, remember). A case such as:

case i Nunber 2:
printf(“Both nunbers are the sanme!");

is illegal! iNumber2 is a variable, and therefore not
constant. The other problem is that strings can not be
compared with a switch (and we'll find out why
when we cover strings).

Hello Nasty

The word break can be used anywhere a statement
can. It jumps out of the current block (i.e. the switch)
and continues with the next instruction. Some
programmers introduce unwitting bugs by not
realising what block it will jump out of. A break will
only jump out of statement blocks created with:

L niian Wi ~ PROGRAMMING
1 B R | - 1
o - - - - L 3 - . - -
1 1 1 e 1 1 "

- L w - L I__ L)
3 3 R
switch
while
do...while
for
For example,
i Val =0;
@ = while(ival < 100)
{
i Val ++;
if (ival == 10)
{
printf(“Limt reached...”);
break;
1
}

This while loop only iterates 10 times, because of the
break statement. What is subtle is that the statement
attached to ‘if’ does not get considered as a block (it
is not in the list above, note).

Also, the break will only jump out of one block. To be
specific - the current block. So if you have nested two
loops, and issued a break command inside the inner
one, only it would terminate. This is most obvious
when using for:

for(y=0;y<20; y++)
{
for(x=0; x<32; x++)

{
printf(“X");
it (x ==y)

break;
}

[* break causes the code to junp here, and
continue with the

next value of y */

printf(“\n");

}

Layout (Case)
‘C" is case sensitive. All the reserved words (like ‘if’
and ‘while’) must be written in lower case, as must
the type names (‘int’, ‘float’, ‘char’ and so on).
Variable names, on the other hand, do not need to
be in lower case, but you should be consistent when
naming and using them. ‘Num’ and ‘num’ are
different variable names, and often cause problems,
especially for non-Linux users who are used to the
case-insensitivities of DOS and Windows. It is best to
establish a style, perhaps using underscores instead of
spaces, or capital letters to indicate new words.

The author

Steven Goodwin celebrates (really!) 10 years of C programming.
Over that time he’s written compilers, emulators, quantum
superpositions, and four published computer games.

Issue 15 ¢ 2001 ' LINUX MAGAZINE n

ALL THE FREEDOM
YOU NEED

5 USE Linux 7.3

SECURE — STABLE®= SUPERIOR

Yes, please send me my copy of SuSE Linux ...

o D BusE Linuk users anjoy 1B power and stalbdity of Su5E Lisge,
Mo Bcessing ackivation. Mo compromizes.

SuSE Linux 7.3 = no limits.
+ Starffice - the Miomsoft-compatible « Watch T on your PC 55

OMice paikage = Gugrl sfely with the Personal Firemall
* Sranning made sasy alth the « Professional installation suppot by
KIDE tool Kooka 00 phone, fax and e-mail
+ Protec] poul dats with Soh-BAID S0 = alg,

Please invoice us at the following address:

Lompany

:_I""l wadal 7.3

Sumasmei Home
Fhore

Ll Pmfessions
i

Fig-code) Postal-cade

Order Online Today! www.suse.co,uk

. nmioEEsu=eEon.uk . +aaiEl2eEadTLoEN . +iy @2 o B3y oo

S5u5E Lid.
The Kinetic Cenine - Theobald 51,

Esrehamwond - Herts. WDG 4P|

