
KNOW HOW

54 LINUX MAGAZINE Issue 15 • 2001

Real-time is a term that characterises a particular
application. Hard real-time means an
application fails catastrophically if deadline

requirements are not met. Soft real-time means an
application suffers degradation in quality, but not
catastrophic failure, if deadline requirements are not
met. Both hard and soft real-time are clock time
independent. 

Linux is capable of meeting a wide variety of real-
time requirements, in terms of specific timing needs,
addressed by specific levels of software (interrupt
service routine versus user application level). Interrupt
service routine software is delayed by interrupt off
periods in the kernel, and the Linux 2.4 kernel has
very short interrupt off timings, with none greater
than 60 microseconds on an 800 MHz Pentium III
class system. This level of performance meets the vast
majority of real-time requirements for interrupt level
software. This is particularly true given modern
system designs, where extremely fast I/O response
requirements tend to be serviced by dedicated
hardware in the form of intelligent I/O controllers,
dedicated micro-controllers or custom dedicated
hardware. 

In the rare remaining cases where Linux interrupt

Can Linux be a

“real-time operating

system”? Kevin

Morgan investigates

Pre-emptible Linux

A REALITY
CHECK

off periods cannot be tolerated, RTLinux and RTAI are
available. These are sub-kernel technologies that
provide simple multi-threaded interrupt handling
environments for driver level software. These
environments emulate (virtualise) interrupt
management requests from Linux, and thereby
reduce the worst case interrupt off timings for the
driver software written for these environments from
the 60 microsecond level down to approximately 10
microseconds.

Modern real-time environments typically involve
substantial control and monitoring software in the
real-time control path. Such software resides at the
user application level. For example, consider real-time
control software written in Java, running on a JVM,
an increasingly common design choice. Such a system
would never be structured as driver level software.
Response requirements for applications are directly
tied to the kernel’s ability to pre-empt a running
process and switch to a higher priority process (newly
awoken) very quickly. The lack of kernel pre-emption
in Linux means that long system calls can delay high
priority user process execution for relatively long
periods, running into the tens of milliseconds in a 2.4
kernel. There is now a kernel pre-emption patch that
today reduces this time down to one to two
milliseconds, with further improvements planned for
the future.

Whether an operating system capable of these
levels of responsiveness guarantees is considered real-
time or not is a positioning rather than a technical
issue. This level of improvement in Linux moves it
from “problematic” to “very acceptable” for the vast
majority of applications that have real-time
requirements (soft or hard). 

Maintenance cost and longevity
All of the changes for the pre-emptible kernel patch
directly leverage the SMP spinlocks, which are
themselves fundamental in Linux for symmetric
multiprocessing. The code modifications in the pre-
emptible kernel patch are thereby limited to the four
areas (see The Patch Specifics). New kernel code that
functions correctly in an SMP kernel requires
absolutely no additional changes in the pre-emptible

The pre-emptible kernel patch modifies the definition (implementation) of a
spinlock, changing it from its symmetric multiprocessing (SMP) specific
implementation to a pre-emption lock. In both cases, the locking function acts as
a control on re-entrancy to a critical section of kernel software. Additionally, the
pre-emptible kernel patch modifies the interrupt handling software to allow
rescheduling on return from interrupt if a higher priority process has become
executable, even if the interrupted process was running in kernel mode (provided
the process is not in a critical pre-emption locked region). Spin unlocks are
redefined to return the system to a pre-emptible state, and check if an immediate
context switch is needed. Lastly, the kernel build definition for a uniprocessor
target system is modified to include the spinlocks (implemented as pre-emption
locks). Through these four basic changes, the Linux kernel becomes generally pre-
emptible (with short non-pre-emptible regions corresponding to the spinlocked
regions in an SMP kernel). Process level responsiveness is dramatically improved,
both on average and in the worst cases.

The patch specifics



KNOW HOW

55LINUX MAGAZINEIssue 15 • 2001

kernel patch. Thus, maintenance of the patch against
the evolving Linux base is low cost.

Improvement in Linux process level responsiveness
is a must requirement for many embedded system
designers considering the use of Linux as an OS
platform. Embedded developers have a simple choice:
enable kernel pre-emption if needed by the demands
of their responsiveness requirement, or continue to
use non-pre-emptible Linux if sufficient as is.

Audio processing under load
In order to achieve over 20x improvements in process
level responsiveness, what level of throughput loss is
acceptable? If throughput loss is less than two to
three per cent, the cost is outweighed by the
improvement in system responsiveness. This trade off
does not have to be made if every ounce of
throughput is critical, and process level
responsiveness is not. Users can select pre-emption or
not, as they see fit.

Official Linux kernel source
Pre-emptible kernel technology (as a build option,
similar to SMP) should be included in the Linux source
code, as provided at kernel.org, starting with the 2.5
kernel base. It is a fundamental improvement in
Linux, which has value to all Linux user communities
(desktop, server and embedded), and should be
provided with this central distribution.

However, continued development and
deployment of pre-emption technology in Linux will
not slow down if the technology is not integrated
into the official source tree. Many Linux
technologies are available and in widespread use
today that are not part of the source code, and may
never be included. This is one of the key benefits of
open source; new and innovative technologies can
be developed and provided when necessary, with
the best getting extensive usage and support.
Independent of Linux 2.5 and beyond, Linux kernel
pre-emption technology is available today as an
open source patch and there will continue to be
enhancements to this technology.

In any case, certain embedded Linux companies are
committed to the long-term availability and support
of this capability and committed to providing this
leading edge advancement across all major target
platforms. Providing an alternative semaphore
implementation that utilises priority inheritance is an
improvement under design. Continuing to refine long
spinlock held regions is an ongoing effort.
Characterising throughput impacts (positively and
negatively) on a number of workloads is under
progress and will be shortly available. A number of
application success stories will become public over
the course of the next year as this technology is
widely designed in and deployed by embedded
system product organizations. 

Throughput concerns
Some oppose a pre-emptible kernel because of
throughput concerns. Others oppose pre-emptibility
because of concerns about growing complexity in the
kernel. This argument is specious, because the pre-
emption approach takes advantage of already
required and in-place SMP locking. No additional
complexity is created. All Linux kernel engineering
must already take into account SMP requirements.
Some oppose continued refinement of SMP locking
to achieve better SMP scaling (on higher way SMP
systems); such refinement has the beneficial side
effect of also reducing pre-emption off periods in a
pre-emptible kernel. 

Pre-emptibility on 2.4 already provides dramatic
improvements in user process responsiveness, and
while further improvement would be beneficial, the
current level of improvement is already of
tremendous value. Hence, the pros and cons of
improving SMP scaling in Linux can be debated
relatively independently of pre-emptibility
improvement opportunities.

Responsibility to the community
Embedded Linux companies have responsibilities to
the open source and Linux communities, as well as
to the embedded system product development
communities. They have a responsibility to
innovate and release innovations early and often,
for public comment and contribution. They have a
corporate responsibility to do their best to enable
Linux to be a viable operating system platform for
embedded system design and implementation.
Their customers will also find significant value in
the exercise of that responsibility, through the
delivery of such product technologies as a pre-
emptible Linux kernel.

The Linux kernel community is large and diverse. In
every technical area, there is lively discussion and
debate. Pre-emptible kernel technology is no
different. The embedded systems marketplace, and
the Linux community itself, will eventually decide the
relative merits of pre-emptible kernel technology.

At a simplistic level, changing a uniprocessor kernel to add internal re-entrancy
management means “more code” and hence “more time.” Superficially, a pre-
emptible kernel will have reduced throughput. 

At the heart of the throughput issue is the question of a balanced system
design, and the overall design objectives. How important is a responsive Linux? In
a world of streaming media, responsiveness is quite important. A demonstration
of the pre-emptible kernel doing simple audio processing shows that even a
trivial load on non-pre-emptible Linux causes user process delays that exceed the
threshold of the human ear, and audio glitches are heard. With pre-emption
enabled, these delays are vastly reduced, and no audible glitches are heard.

The impact of throughput

The author
Kevin Morgan is Vice
President of Engineering at
MontaVista Software. He
has 20 years of experience
developing embedded and
real-time computer systems
for Hewlett-Packard Co.
Experienced in operating
systems and development.
Kevin was a member of
the HP 1,000 computer
software design team.
While at Hewlett-Packard,
he worked as an engineer,
project manager and
section manager spanning
the development of five
operating systems. Most
recently serving as HP-UX
Operating System
Laboratory Manager, Kevin
was responsible for overall
HP-UX release planning,
execution and delivery for
Hewlett-Packard server
computers.


