
PROGRAMMING

58 LINUX MAGAZINE Issue 15 • 2001

Python: Distributed applications with XML-RPC

PUPPET OBJECTS
These days many applications exist in a

distributed environment. This means
applications are running on several machines

that communicate with each other and exchange
data. There are two basic setups: on the one hand
there are message-oriented processes for inter-
process communications, like Named Pipes; and on
the other hand are Remote Procedure Call processes
(RPC). RPC processes are used in Unix, for example,
to implement various daemons and services such as
Portmapper or NFS.

The first standardised processes for providing
services across the boundaries of individual machines
were created in the 90s. The most important of these
processes are CORBA (Common Object Request

XML-RPC is a portable

XML-based process for

Remote Procedure

Calls. In conjunction

with Python it can be

used for quick access

to distributed

applications. Andreas

Jung explains how

Broker Architecture) and its proprietary Microsoft
counterpart DCOM. Both standards are very complex
and therefore more suitable for large enterprise
solutions. For the Java environment there is the RMI
mechanism (Remote Method Invocation), which
allows remote procedure calls between Java
programs. Unfortunately RMI is not portable and
cannot therefore be used from other programming
languages.

XML-RPC bridges this gap by offering the
following two advantages: one, it is portable, i.e. it is
independent of any particular programming language
or operating system and can therefore be applied
universally; two, it is simple to implement because
XML-RPC is based on the established standards XML
and HTTP.

How XML-RPC works
Communication between a client and an XML-RPC
server always takes place via HTTP. The advantage of
this is that it allows the use of existing components.
Using HTTP also simplifies communication across
firewalls and proxies. The client’s request to the server
and the server’s response are encoded in XML. Listing
1 contains an example of this, showing a simple
arithmetic calculation using integer data types. Table
1 shows all data types that can be passed between
client and server.

XML-RPC for Python
At the moment there are two XML-RPC
implementations for Python. One is the xmlrpclib
package by Frederik Lundh, currently maintained by
Pythonware. This package supports XML-RPC for
server as well as client applications. The client-side
components of the package are going to be
integrated into Python and should make their first
appearance in version 2.2. All examples in the
following text relate to this package.

The other implementation is the py-xmlrpc project,
which is more recent. Its authors, Chris Jensen and
Shilad Sen, have re-implemented time-critical parts in
C with very good performance results. Unfortunately
the documentation is still on the sparse side.

XML-RPC clients with Python
The xmlrpclib server object makes it easy to address
XML-RPC servers from Python:

import xmlrpclib

Listing 1: Client-Server
communication with RPC
Client request to calculate the sum of 17 and 15:

<methodCall>
<methodName>example.sum</methodName>
<params>

<param><value><int>17</int></value></param>
<param><value><int>15</int></value></param>

</params>
</methodCall>

Server response:

<methodResponse>
<params>

<param><value><int>42</int></value></param>
</params>

</methodResponse>

Table 1: Data types in XML-RPC
Type Description
int whole number with sign, 32 bits in length
string character string (typically with Unicode support, since XML

explicitly demands Unicode support)
boolean truth values, true or false
double double-precision floating-point number
datetime.iso8601 date and time
base64 base64-encoded raw data
array one-dimensional array, in which the individual array values can be

of any type
struct A set of key value pairs; keys must be character strings, values

can be of any type

PROGRAMMING

59LINUX MAGAZINEIssue 15 • 2001

server = xmlrpclib.SERVER
(“http://localhost:9000”)
print server.example.sum(17,15)

The constructor links the passed HTTP-URLs to the
server object. In our example the XML-RPC server is
running on a local machine on port 9000. The actual
RPC call of the sum() method in the example class is
similar to a local function call – with the restriction
that keyword parameters such as sum(a=17,b=15)
are not allowed.

Some XML-RPCs support something called
Introspection API, which clients can use to obtain
information about a server’s method calls. All
methods of this API can be addressed via the system
object of the server instance (see Table 2).

XML-RPC server in Python
Creating an XML-RPC server with Python also involves
little effort. The module xmlrpcserver provides all the
important functions required. Listing 2 shows the
body of such a server.

The call() method of xmlrpcHandler is called by the
underlying socket server for each incoming call and
receives the name of a method to be called and the
arguments for the function call. The call getattr()
checks whether the xmlrpcHandler class contains a
method of that name, and returns a reference to this
method if successful. The method is then started with
the appropriate arguments by s_method() and returns
a result. Some methods, like in the example, are
linked as xmlrpcHandler class methods.

Authentication for XML-RPC
The XML-RPC standard does not define any
authentication processes. Instead, this is left to the
transport protocol HTTP. The most common method
is basic authentication, in which the user name and
password are transferred in the authorisation section
of the HTTP header. Cookie-based authentication
works in a similar way, but the information is stored
in a cookie and then transferred. Unlike basic
authentication this method is not standardised. If you
want to be able to use basic authentication via XML-
RPC you will need to extend the internal transport
class, as shown in Listing 3.

The new transport class BasicAuthTransport
extends the HTTP header with the appropriate
authorisation at each request. This is done by
redefining the request() function of the basic class.
Applications can use the new transport class by
passing an instance to the constructor of the XML-
RPC server object (Listing 4).

Conclusion
Applying an XML-RPC interface to Python
applications does not involve much effort. The
essential part of the XML-RPC infrastructure remains

Listing 2: Server body
01 import SocketServer
02 import xmlrpcserver
03 import xmlrpclib
04
05 class xmlrpcHandler(xmlrpcserver.RequestHandler):
06
07 def call(self, method, args):
08
09 try:
10 s_method = getattr(self, method)
11 except:
12 raise AttributeError, \
13 “Server does not have XML-RPC “ \
14 “procedure %s” % method
15 return s_method(method, args)
16
17 def sum(self,a,b):
18 print ‘Arguments:’,a,b
19 return a+b
20
21 if __name__ == ‘__main__’:
22 server = SocketServer.TCPServer((‘’, 8000), xmlrpcHandler)
23 server.serve_forever()

Listing 3: Authentication
with XML-RPC
01 import string, xmlrpclib, httplib
02 from base64 import encodestring
03
04 class BasicAuthTransport(xmlrpclib.Transport):
05 def __init__(self, username=None, password=None):
06 self.username=username
07 self.password=password
08
09 def request(self, host, handler, request_body):
10 h = httplib.HTTP(host)
11 h.putrequest(“POST”, handler)
12
13 # required by HTTP/1.1
14 h.putheader(“Host”, host)
15
16 # required by XML-RPC
17 h.putheader(“User-Agent”, self.user_agent)
18 h.putheader(“Content-Type”, “text/xml”)
19 h.putheader(“Content-Length”, str(len(request_body)))
20
21 # basic auth
22 if self.username is not None and self.password is not None:
23 h.putheader(“AUTHORIZATION”, “Basic %s” % string.replace(
24 encodestring(“%s:%s” % (self.username,
self.password)),
25 “\012”, “”))
26 h.endheaders()
27
28 if request_body:
29 h.send(request_body)
30
31 errcode, errmsg, headers = h.getreply()
32
33 if errcode != 200:
34 raise xmlrpclib.ProtocolError(
35 host + handler,
36 errcode, errmsg,
37 headers
38)
39 return self.parse_response(h.getfile())

PROGRAMMING

60 LINUX MAGAZINE Issue 15 • 2001

hidden from the developer. This has contributed
greatly to XML-RPC’s popularity, which has practically
become the de-facto standard.

New features in Python 2.2
Guido van Rossum and his team are currently
working on Python 2.2, due for release at the end of
the year. The second alpha release already offers
some new features.

New division operator: //
The present division operator always returns an
integer value. This is inadequate for genuine floating-
point arithmetic. From version 3.0 the standard
operator / will return results as floating-point values,
while the new operator // will be responsible for
integer division. You can already use this new
functionality by linking from __future__ import
division into your programs.

Unification of built-in types and
classes
Until now it has been impossible to derive your own
classes from built-in types (lists or dictionaries for
example). This limitation ends with 2.2. User-defined
dictionary classes can now be derived as follows:

class MyDictionary(dictionary):
def __getitem__(self,key): ...

Iterators
Iterators are closely connected to for loops. Sequence
types (character strings, lists, tuples) used to be the
only types through which iteration was possible
within a loop. From 2.2 all objects can be used for
iteration with for if they have implemented the new
iterator interface. For example:

01 class count:
02
03 def __init__(self):
04 self.data = range(0,100)
05 self.n = 0
06
07 def __iter__(self):
08 return self
09
10
11 def next(self):
12 try:
13 num = self.data[self.n]
14 except:
15 raise StopIteration
16
17 self.n+=2
18 return num
19
20 obj = count()
21 iter_obj = iter(obj)
22
23 for item in iter_obj:
24 print item

In order to be able to do this, classes must implement
the method __iter__(). An iterator object is created
with the new function iter(). This calls __iter__() for
the object and returns a reference to an iterator
(normally the object itself). The for loop calls the
next() function of the iterator until it raises a
StopIteration exception.

Generators
The concept behind generators is closely related to
that of iterators. They are basically functions which
return a generator object when called and which
provide data via the next() method. For instance:

01 from __future__ import generators
02
03 def numerator(N):
04 for n in range(N):
05 yield n
06
07 gen = numerator(100)
08
09 while 1:
10 print gen.next()

The new command yield returns a value with each
next() call. However, the local variables of the
generator function are frozen and processing
continues in the same place at the following next().

Table 2: Introspection API methods
Method Description
server.system.listMethods() returns a list of all methods of the XML-RPC server

server.system.method
Signature(methodname) returns a list of signatures for a method name, for

example server.system.methodSignature(‘sum’)
returns [(‘int’,’int’)]

server.system.method
Help(methodname) returns method documentation; in Python this is

typically the documentation string for the function

Listing 4: Calling the
new transport class
import xmlrpclib
server = xmlrpclib.SERVER(“http://localhost:9000”, \

BasicAuthTransport(‘jim’,’mypassword’))
print server.example.sum(17,15)

Info
XML-RPC http://www.xmlrpc.org/
xmlrpclib http://www.pythonware.com/products/

xmlrpc/
py-xmlrpc http://sourceforge.net/projects/

py-xmlrpc/

The author
Python expert Andreas
Jung currently lives near
Washington D.C. and
works for Zope
Corporation (formerly
Digital Creations) as a
software engineer in the
Zope core team.

