
KNOW HOW

34 LINUX MAGAZINE Issue 15 • 2001

QT

GETTING STARTED
WITH QT

23. main() is much the
same as in the previous
code we have looked at.
When you run the program
you get something like in
Figure 1. As you can see,
the four buttons are lined
up vertically in a nice neat
fashion and they take up
equal space in the window.
Try editing out a button
and recompiling, and you
will see that the space is
accommodated cleanly for each button again. So
how does this magic work?

Well, if you look at line five, you can see we inherit
QVBox. QVBox is a class for arranging widgets in a
vertical fashion and is very useful when you inherit
from it as it will automatically arrange child widgets
into a vertical layout. In this example we added push
buttons as child widgets, but let’s also look at
combining QVBox with a QHBox (for horizontal
layouts):

1 #include <qapplication.h>
2 #include <qhbox.h>
3 #include <qvbox.h>
4 #include <qpushbutton.h>
5
6 class MyClass : public QVBox
7 {
8 public:
9 MyClass();
10 ~MyClass();
11
12 private:
13 QHBox * hbox;
14 QPushButton * bobButt;
15 QPushButton * fredButt;
16 QPushButton * frankButt;
17 QPushButton * jimButt;
18 QPushButton * janButt;
19 QPushButton * aprilButt;
20 QPushButton * mayButt;
21
22 };
23

Getting organised
To get us started this month we take a look at some
of the layout classes Qt has available for helping
create your interfaces. First, type in the following
program and compile it:

1 #include <qapplication.h>
2 #include <qvbox.h>
3 #include <qpushbutton.h>
4
5 class MyClass : public QVBox
6 {
7 public:
8 MyClass();
9 ~MyClass();
10
11 private:
12 QPushButton * bobButt;
13 QPushButton * fredButt;
14 QPushButton * frankButt;
15 QPushButton * jimButt;
16 };
17
18 MyClass::MyClass()
19 {
20 bobButt = new QPushButton(“Bob”, this);
21 fredButt = new QPushButton(“Fred”, this);
22 frankButt = new QPushButton(“Frank”, this);
23 jimButt = new QPushButton(“Jim”, this);
24 }
25
26 MyClass::~MyClass()
27 {
28 }
29
30 int main(int argc, char **argv)
31 {
32 QApplication a(argc, argv);
33
34 MyClass w;
35 a.setMainWidget(&w);
36 w.show();
37 return a.exec();
38 }

In this snippet of code we create four QPushButton
pointers on lines 12 – 15 (making sure to include
qpushbutton.h on line three). The actual
QPushButton objects are then created on lines 20 –

Welcome to part three

of our foray into the

interesting world of

Qt application

development by Jono

Bacon. This month we

will take a long hard

look at geometry

classes for creating

interfaces and

examine how Qt deals

with interaction with

our widgets

Figure 1: Four buttons
equally spaced

KNOW HOW

35LINUX MAGAZINEIssue 15 • 2001

24 MyClass::MyClass()
25 {
26 hbox = new QHBox(this);
27 janButt = new QPushButton(“Jan”, hbox);
28 aprilButt = new QPushButton(“April”, hbox);
29 mayButt = new QPushButton(“May”, hbox);
30 bobButt = new QPushButton(“Bob”, this);
31 fredButt = new QPushButton(“Fred”, this);
32 frankButt = new QPushButton(“Frank”, this);
33 jimButt = new QPushButton(“Jim”, this);
34 }
35
36 MyClass::~MyClass()
37 {
38 }
39
40 int main(int argc, char **argv)
41 {
42 QApplication a(argc, argv);
43
44 MyClass w;
45 a.setMainWidget(&w);
46 w.show();
47 return a.exec();
48 }

In this example I firstly added hbox.h as an include
file on line 2. I then created a pointer to a QHBox
object on line 13, and
created the object on line
26. On lines 27 – 29 I
created three more
QPushButton objects (their
pointers being declared on
lines 18 – 20), but instead
of setting the parent to
‘this’, I set it to ‘hbox’
which is the name of the
QHBox object. By setting the parent to ‘hbox’ of a
widget, it is added to the layout manager specified in
the parent and is organised. So when we create a
QHBox object on line 26, it is then housing the new
three push buttons horizontally at the top of the
vertical manager. This can all be seen in Figure 2.

Layout management is something integral to Qt
interface design. We will cover more on interface
design in the next issue.

Connecting the pieces together
OK, so we’ve now come quite far. We have discussed
widgets, layout, parent/child relationships and written
a couple of small programs. This is all fine and dandy,
but our programs don’t actually do anything yet. For
example when I click on a button, I want something
to happen. To do this there is a comprehensive
framework built right into Qt called the Signal/Slot
framework. This is a system of connecting widgets to
functions so that when you do something some
functionality can be associated with it.

The way signals and slots work is that each widget

(a graphical object on screen like a button) has a
number of signals. A signal is a function that is
emitted when you do something with the widget. For
example, to see the signals that are available for
QPushButton’s, we need to look at the QButton
documentation (as QPushButton is a type of QButton
and inherits it). We can see the following signals:

● void pressed ()
● void released ()
● void clicked ()
● void toggled (bool)
● void stateChanged (int)

So when a user clicks on a QPushButton, the clicked ()
signal is emitted. We can then connect this signal to a
slot. A slot is just a normal method that can do whatever
needed in response to the signal being emitted. So how
does this work, you ask? Well to explain, lets look at
some code to get us started. You will need to use
multiple files for this code. Type the following code in:

myclass.h:
1 #include <qapplication.h>
2 #include <qhbox.h>
3 #include <qvbox.h>
4 #include <qpushbutton.h>
5
6 #ifndef MYCLASS_H
7 #define MYCLASS_H
8
9 class MyClass : public QVBox
10 {
11 Q_OBJECT
12
13 public:
14 MyClass();
15 ~MyClass();
16
17 public slots:
18 void slotJim();
19
20 private:
21 QHBox * hbox;
22 QPushButton * bobButt;
23 QPushButton * fredButt;
24 QPushButton * frankButt;
25 QPushButton * jimButt;
26 QPushButton * janButt;
27 QPushButton * aprilButt;
28 QPushButton * mayButt;
29
30 };
31
33 #endif

myclass.cpp:
1 #include <qmessagebox.h>
2 #include “myclass.h”
3
4 MyClass::MyClass()

A slot is
just a

normal
method

that can do
whatever
needed in

response to
the signal

being
emitted

‘
’

Figure 2: Now with three
new push buttons

slotname()));

We have the following code:

connect(jimButt, SIGNAL(clicked()), this,
SLOT(slotJim()));

First of all we do not need the QObject:: prefix as we
inherit QVBox which in turn inherits QObject down
the line. We can see that the jimButt object (the
button with “Jim” written on it) is the object we are
connecting a slot to. We are dealing with the
clicked() signal in this connection. We could of course
use any of the other signals, but clicked() is a good
one to start with. We then connect this signal to the
slotJim() slot. We specify ‘this’ as the object whilst
MyClass has the slot definition.

You may have seen some of the signals have a
parameter such as toggled(bool). This signal is for
when the button is a toggle button and you want to
pass to the slot whether the button is toggled or not
as the parameter. To use signals that pass a
parameter, your slot MUST accept the same
parameter type. This may sound like a limitation but
in practice it really isn’t: this feature is due to Qt
being type safe which is a good thing. So for
example you could have the following connection:

connect(toggleButt, SIGNAL(toggled(bool)),
this, SLOT(slotIsToggled(bool)));

You could then use the slotIsToggled(bool) slot like
this example:

MyClass::slotIsToggled(bool state)
{
if(state == TRUE)
{
// do something
}
else
{
// something else
}
}

Wrapping things up
Well, in this tutorial we have looked at layout
managers, signals in widgets, signals and slots and a
few others things. We are well on the way now to
writing more comprehensive Qt applications. Next
month we will build our first application based on
this knowledge and use Qt Designer to develop our
interfaces. Until then, I suggest you read through the
Qt documentation and have a play with the different
signals and methods available for widgets such as
QPushButton, QLabel etc. Have fun!

KNOW HOW

36 LINUX MAGAZINE Issue 15 • 2001

5 {
6 hbox = new QHBox(this);
7 janButt = new QPushButton(“Jan”, hbox);
8 aprilButt = new QPushButton(“April”, hbox);
9 mayButt = new QPushButton(“May”, hbox);
10 bobButt = new QPushButton(“Bob”, this);
11 fredButt = new QPushButton(“Fred”, this);
12 frankButt = new QPushButton(“Frank”, this);
13 jimButt = new QPushButton(“Jim”, this);
14
15 connect(jimButt, SIGNAL(clicked()), this,
SLOT(slotJim()));
16 }
17
18 MyClass::~MyClass()
19 {
20 }
21
22 void MyClass::slotJim()
23 {
24 QMessageBox::information(this, “Woohoo!”,
“slotJim() has been called!\n”, “Cancel”);
25 }

main.cpp:
1 #include <qapplication.h>
2 #include “myclass.h”
3
4 int main(int argc, char **argv)
5 {
6 QApplication a(argc, argv);
7
8 MyClass w;
9 a.setMainWidget(&w);
10 w.show();
11 return a.exec();
12 }

You will need to run the moc tool on the header file if
you are building this by hand. See the Qt documenta-
tion for details on this. Before we look at the code,
let’s have a quick discussion of what moc actually is.

moc (Meta Object Compiler) is a little tool that
converts some of the Qt signals and slots syntax into
regular C++ code, and it also does some other nifty
little things. You can see this code for example in the
header file where you see ‘Q_OBJECT’ and public
slots:. The ‘Q_OBJECT’ code indicates you are using
the Qt object model (the signals/slots framework) in
this header file. Always put this at the top of any
class that uses signals and slots. The ‘public slots:’
part of the code indicates the following methods are
slots that will be connected to signals. We have a
single slot slotJim() which is a method like any other
normal method.

Now let’s take a look at line 15. This line is where
the actual connection between the signal and slot
occurs. It is in this format:

QObject::connect(object_that_emits_the_signal,
SLOT(signal()), object_with_slot, SLOT(

moc
(Meta
Object

Compiler)
is a little
tool that
converts
some of
the Qt

signals and
slots

syntax into
regular

C++ code

‘

’

