
KNOW HOW

52 LINUX MAGAZINE Issue 15 • 2001

Up the creek without a package
Modern Linux distributions have sophisticated
package management tools. Large and complex
applications can be installed or removed with a single
command or mouse click. Where you require non-
standard options a few tweaks to the source package
will usually give you what you want. Package
management tools do your housekeeping for you
and (when the packages are built to a well-planned
policy) ensure that the various components of your
system interoperate and function consistently.

Sometimes though, the app you want may not be
available as a package, the source package may not
be flexible enough or you may want to work with the
latest cvs source. Whatever the reason may be, you
find yourself working with the unpackaged source or
binary files.

For most Linux users, this is not a daunting task.
Typically, you unpack the tar-ball into /usr/ local/ src
and run through some variation of the following:

./configure --some-option --some-other-option
make
make install

At the end of which the application should be safely
installed into the /usr/ local tree.

That is easy enough. At this point, however, you
should ask yourself some questions:

● Where did all those files go? I can’t use a package
tool to get a simple list of what went where.

The /usr/ local tree

can easily become a

tangle, but as Bruce

Richardson explains

this needn’t be the

case. GNU Stow is a

simple application,

which keeps it

organised by allowing

each piece of

software to be

installed into a

separate directory

tree

Organisation
DIY package management in /usr/ local

STOW IT!

Having un-stowed an application, there is no need to delete it. You could, for
example, keep two or more instances of an application in /usr/ local/ stow
(different versions, perhaps, or compiled with different options) and switch
between them at will. Just install them to different target directories.

The fact that Stow keeps applications in their own hierarchies makes them
portable. You can quickly copy stowed apps between machines by making a
tarball of the app’s directory tree and un-tarring it into the Stow directory of the
target machine.

Stow prevents applications from overwriting each other’s files. Before it
creates any symlinks it checks to see if any proposed links would overwrite
existing files. If a conflict is found, Stow does not proceed.

● Will it be easy to cleanly uninstall the application?
Even if I have a list of all the installed files, what
steps do I need to take to uninstall safely?

● Am I sure the application installed itself nicely and
didn’t break anything? This application wasn’t
packaged for my system and the developers may
not have been as careful as they should have been.

These questions should worry you. The more
applications you install like this, the harder it
becomes to answer them. With unpackaged
applications you have to do the housekeeping and
maintenance yourself. This can turn into a nightmare.

/usr/local/ – The Land Where The Wild Things Are.

To quote the Filesystem Hierarchy Standard: “The
/usr/ local hierarchy is for use by the system
administrator when installing software locally. It
needs to be safe from being overwritten when the
system software is updated”. That is to say, it is the
place to install software, which is not part of the
standard system. In practice this means software that
has not been pre-packaged using your distribution’s
packaging tools.

The /usr/ local hierarchy is essentially a twin of the
/usr hierarchy, with bin, sbin, lib (and so on)
subdirectories. A tar-balled application will usually
install itself entirely within this hierarchy, unless you
specify some other location. Precisely what goes
where (docs to /usr/ local/ doc or /usr/ local/ share/
doc?) varies according to the developer’s whim. If you
are lucky, you may be able to place things exactly
where you want them by passing the correct options
to the configure script.

A simple solution
Stow offers a way to organise the /usr/ local
hierarchy, avoiding tangles and breakages. This is
done by installing each application into its own
corralled directory tree, and then creating symlinks to
the application files. To install an application with
Stow, follow this sequence:

● Create a destination directory for your new
application. /usr/ local/ stow/ appname is traditional
(and logical).

Further advantages

KNOW HOW

53LINUX MAGAZINEIssue 15 • 2001

● Install the software into this directory in such a way
that files which would normally go into /usr/ local/
bin are placed in /usr/ local/ stow/ appname/ bin,
files for /usr/ local/ share go into appname/ share
and so on. For tips on how to do this see the
section called Installing to the target directory.

● Then simply do:

cd /usr/local/stow
stow appname

In the third step Stow moves recursively through the
appname/ tree. For each file in appname/ bin a
symlink is created in /usr/ local/ bin, for files in
appname/ doc links are created in /usr/ local/ doc etc.

What was the point of that, you may ask? It’s more
laborious than the usual method and the installed
application doesn’t work any faster. The advantage
becomes clear, however, when you come to uninstall
the stowed app. Here’s the entire procedure:

cd /usr/local/stow
stow -D appname

This removes all symlinks to the application. You are
then free to delete the /usr/ local/ stow/ appname,
knowing that you are deleting all the application’s
files and only those files.

Installing Stow
Stow is a Perl script and Perl is the only prerequisite.
It should work with Perl 4 or Perl 5.

A Stow .deb package is available as part of the
standard Debian distribution. Mandrake is the only
rpm-based distribution for which we could find a
Stow package. On any other set-up you will need to
download the tar-ball from
ftp://ftp.gnu.org/gnu/stow.

For the obsessive compulsives amongst you, it is
possible to install both Perl and Stow as stowed
applications:

● Install Perl into /usr/ local/ stow/ perl
● Install Stow into /usr/ local/ stow/ stow
● Now simply:

cd /usr/local/stow
perl/bin/perl stow/bin/stow perl stow

Installing to the target directory
Many source tarballs are designed to be relocatable.
This means that you can change the base directory –
the “prefix” – into which the application is installed,
usually by passing a --prefix=desiredlocation option
to the configure script (/usr/ local is usually the
default). You might think that this is how you
should install to the Stow target directory, but you
would be wrong.

● The app won’t be run from its target directory. It
will be run from its apparent location, as created
by the symlinks.

● If the app uses shared resources, it will look for them
in the prefix tree. If you set the prefix to be the Stow
target directory, the app won’t be able to find any
shared resources because the target directory
contains only files belonging to the application itself.

Instead you must let the application think it will be
installed to /usr /local (which is usually the default
anyway) but divert the actual installation into the
target directory. One way is to run

make install prefix=/usr/local/stow/targetdir

rather than just

make install

but this will not work for every application. See the
Compile-time and install-time section of the Stow
documentation for a detailed discussion of this issue.

Lastly...
My experience has been that while veteran Linux
users tend to be familiar with Stow, newer users have
usually not discovered it. This is a shame as it makes
the potentially dangerous wilderness of /usr/ local a
much safer place. Properly used, Stow can help you
keep your local hierarchy as tidy and well organised
as the standard parts of your system.

Stow attempts to create as few symlinks as possible. If it can link to a directory
rather than the files within it, it will. So if the target directory contains a lib/ data
directory but there is no data directory in /usr/ local/ lib, Stow will create a
symlink to the data directory, thus importing all its contents with only one link.

If you later use Stow to install another application which also includes a lib/
data directory, Stow will resolve the conflict by replacing the symlink with an
actual /usr/ local/ lib/ data directory and then populating that with symlinks to
both applications.

Imagine what would happen, however, if you were to install the second
application directly, not using Stow. The installation procedure would simply
follow the symlink and install files directly into the first application’s target
directory. If you ever un-stow the first application, some files belonging to the
second application would be unstowed with it.

To avoid this problem (a) make sure that /usr/ local contains all the standard
setup directories (bin, sbin, share and so on) and (b) use Stow to install all local
applications, if possible.

Another gotcha is that ldconfig ignores symbolic links when scanning for
libraries. If a stowed app includes libraries you may need to add some symlinks of
your own in /usr/ local/ lib.

Always un-stow an application before making any changes to the contents of
the target directory. Re-stow after the changes are made. Otherwise you risk
broken links.

Things to watch

