
BEGINNERS

73LINUX MAGAZINEIssue 16 • 2002

Do you write shell

scripts, in which you

want to ask for user

inputs? Christian Perle

takes a look at the

Dialog tool, which

provides you with a

wide variety of input

mechanisms

OUT OF THE BOX

QUESTION AND
ANSWER

Out of the box
There are thousands of tools and utilities for
Linux. “Out of the box” takes the pick of the
bunch and each month suggests a little program,
which we feel is either absolutely indispensable or
unduly ignored.

IThe dialog program has been around for a long
time, and is an integral part of almost every Linux
distribution, but it has been living an undeservedly

shadow existence. At best, one or two of you may
have come across it when configuring the Linux
kernel with make menuconfig, but the kernel dialog
is a specially adapted version, which is not compatible
with the normal program.

Figure 1: Make menuconfig

Figure 2: In dialog

Seek a dialog
The program has recently acquired its own homepage
at the URL http://www.advancedresearch.org/dialog/.
The present dialog maintainer, Vincent Stemen,
created this site while the original author, Savio Lam
devotes himself to other projects in the meantime.

You can find out whether you need to install the
program with the which dialog command. If no
output is supplied, then dialog is not installed. On the
other hand, if the words /usr/ bin/ dialog appear, you
will find the program in the /usr/ bin directory.

Installation
With YaST(2), rpm, dpkg, apt-get and co. you can also
install dialog as an rpm or .deb packet which comes
with your distribution. If you nevertheless want to
compile the program yourself, proceed as follows:

tar xzf dialog-0.7.tar.gz
cd dialog-0.7

make
chmod 755 dialog
chmod 644 dialog.1
su(enter root password)
cp dialog /usr/local/bin
cp dialog.1 /usr/local/man/man1
exit

Both rights amendments with the chmod command
are necessary because by default the group to which
the file belongs obtains write rights.

Yes or no
For a quick test, enter the command dialog – –yesno
“Do you play an instrument?” 15 60. A box should
appear, 60 characters wide and 15 lines deep with
the question text and two buttons, Yes and No
(Figure 2). With the cursor keys and Tab you can
toggle back and forth between the buttons, and your
selection can be confirmed with Return. The buttons
can also be selected directly via the raised letters Y
and N. You can also leave the box without making a
selection by pressing Esc.

dialog returns the selection you have made in the

BEGINNERS

74 LINUX MAGAZINE Issue 16 • 2002

special shell variable named ?. This variable – which
can be interrogated with echo $? – basically contains
the numeric return value of the last shell command.
In the case of the yes/no box, 0 means yes, 1 no and
255 exit without making a selection.

Embedded
In order to use dialog to the full, you embed it into a
shell script, which does various things, depending on
the return value. Listing 1 shows one example.

A series of further options has been added to this.

So the respective boxes with – –backtitle and – –title
are kitted out with suitable headings. The return
value of the first box is stored in the variable ans and
evaluated with if constructs. The option – –msgbox
makes dialog display a simple report with no
alternative choice. The flag – –radiolist on the other
hand displays a list, of which only one element can
be selected with the space bar (Figure 3), similar to
the station buttons on a radio (hence the name of
the option).

The selection of a radio list element is not returned
numerically, but as text on the standard error channel
(stderr). Accordingly, this has to be diverted for
dumping in a temporary file, which is done with the
construct 2> /tmp/dialog.sel. The content of this file
is written in the variable instr. If this is empty (which
can be checked using -z), the selection had been
interrupted with Cancel or Esc. Otherwise, its content
is shown in a further msgbox and the script is ended.

What’s the option?
– –file is a relatively new option in dialog, which
provides for easy file selection. The shell script in
Listing 2 shows a sample application, although this
will only run with a new version of dialog, not with
version 0.62 or older, which is installed on current
distributions.

It shows a file selection dialog, with which one
can browse through the filesystem starting from

Listing 1: Shell script with dialog
#!/bin/sh
dialog --backtitle “Quiz” --title “music question” \
--yesno “Do you play an instrument?” 15 60

ans=$?
if [$ans = 255] ; then
echo stopped
exit

fi
if [$ans = 1] ; then
dialog --backtitle “Quiz” --title “challenge” \

--msgbox “Well then go and learn one!” 15 40
exit 0

else
dialog --backtitle “Quiz” --title “Details” \

--radiolist “Which instrument do you play? \
You can only choose one.” 16 60 5 \
“Violin” “(bowed-string instrument)” off \
“Guitar” “(plucked-string instrument)” on \
“Piano” “(keyboard instrument)” off \
“Trumpet” “(brass instrument)” off \
“Bass” “(bowed-string instrument)” off 2> /tmp/dialog.sel

instr=$(cat /tmp/dialog.sel)
rm /tmp/dialog.sel
if [-z $instr] ; then

echo stopped
exit

fi
dialog --backtitle “Quiz” --title “Quiz ends” \

--msgbox “So you can play $instr. Well listen to this \
then... sounds atrocious! ;-)” 16 40

fi

Listing 2: File selection with dialog
#!/bin/sh

dialog --backtitle “Open text file” \
--title “select file” --clear \
--file $HOME 15 62 0 2>/tmp/dialog.file

file=$(cat /tmp/dialog.file)
rm /tmp/dialog.file
if [! -z $file] ; then
echo $file contains $(wc -l < $file) lines and \

$(wc -c < $file) characters.
fi

Figure 3: A radio list

Figure 4: File selection

BEGINNERS

75LINUX MAGAZINEIssue 16 • 2002

one’s own home directory. If one ends the dialog
by selecting the OK button, the number of
characters and lines of the last file selected will
be displayed.

The option – –file follows the start directory for the
file selection (in this case the home directory of the
current user, as saved in the environment variable
HOME). The next two values define the height (15)
and width (62) of the box. The following value
specifies the mode for the box, possible modes being
listed in Table 1. The selection of an existing file
(Mode 0) is shown in Figure 4.

In a similar manner to the previous example, the
return value is first saved in a temporary file and read
into the variable file. If this variable is not empty
(which is checked using ! -z), then the script uses the
command wc to output the number of lines and
characters in the file selected.

RTFM
dialog can also be used as a simple Pager to read
text files. To do this, use the option – –textbox. For
example, to read the file /etc/ services, enter, in the
shell dialog – –title /etc/services – –textbox
/etc/services 18 70. The cursor keys, Page Up, Page
Down and the space bar can be used to navigate in
the text. With / and ?, you can search forwards or
backwards respectively.

Reference to additional useful dialog options, such
as checklists or input boxes, can be found in the
manpage, which you call up with man dialog.

Kernel The operating system kernel
forms the interface between
hardware and running processes. It
also provides multitasking and
memory management. The actual
Linux is only the kernel.

.deb The packet format of the Debian
distribution. Such packets can easily
be installed and uninstalled with the
packet manager dpkg or the easy to
use front-end apt.

Shell One of the most important
parts of every Unix system – the
command line-controlled user
interface.

$ To find out the content of a shell
variable, put the operator $ before
the variable name.

URL Uniform Resource Locator. The
unique address of a resource on the
Internet. The URL also specifies the
transfer protocol, for example
http://www.google.com or
ftp://ftp.kernel.org/pub/.

rpm With the Red Hat Packet
Manager (which is also used in SuSE)
software packets can be neatly
installed and uninstalled. The
associated packet format is also
called RPM.

RTFM Read The Fine Manual, the
discreet reference to the fact that there
is documentation available to read.

Pager Program for page-by-page
display of a file. Common pagers are
more and less.

Box 1: Shell scripting
For those who have not yet had any
dealings with shell scripts, here are a few
explanations of the listings in this article.
Shell scripts are text files with sequences
of commands, which are executed by the
shell in sequence after the file has been
called up. You can also bind the
execution to conditions (if command) or
repeat parts of the script (while- and for-
commands).

Variables are useful for dumping values,
and these variables are created by simply
writing down a name and assigning it a
value after an equals sign. You can find out
the content of a variable by placing a $ in
front of the variable name.

In the case of if constructs, the actual
condition is often formulated with the test
command, which can also be written as [
for short. Simple comparisons can be done
with =, but checks of files and character
strings are also made available by options.

So [-f foo] checks whether foo is a regular
file; [-z $bar] checks if the content of the
variable bar is empty, and [$a -gt $b] finds
out if the content of a (interpreted as a
figure) is greater than (gt) that of b.

An if query for the shell must always end
with an fi. In between there can also be an
else branch, in which alternative execution
options are specified, which will come into
play when the if condition is not met.

The notation bla=$(command)first
executes the command in the brackets and
then uses its output at this point in the rest
of the command line, so that the output is
assigned the variable bla. This mechanism is
referred to as command substitution.

To make over-long lines in shell scripts
easier to read, you can write a backslash (\)
before the end of the line. By doing this,
the shell knows that the next line is to be
regarded as the continuation of the
current one.

On the other hand, if several
commands are to be placed on one line
these must be separated from each other
by semicolons. This is done, for example,
following an if test. If the following
keyword then were to be standing on its
own line, though, no semicolon would
be necessary.

Apart from the standard output and the
standard error output, which normally end
up on the screen and can be diverted into a
file with > or 2>, the shell can also use the
standard input channel. This is normally
linked to the keyboard, but a

command < file

ensures that the command processes the
data in the file. This is how the wc
command in Listing 2 receives the lines and
characters to be counted from the content
saved in the file variable.

Table 1: Modes for ––file
Mode Meaning
0 Selection of an existing file
1 Selection of an existing directory
2 Input of an existing or non-existent directory
3 Input of an existing or non-existent file

