
KNOW HOW

56 LINUX MAGAZINE Issue 16 • 2002

LVM: Enterprise computing with
the Linux Logical Volume Manager

VARIABLE
DIVISION

thereby considerably cuts down on the costs of
learning, my own implementation is largely based on
this. Incidentally, LVM was originally developed by
IBM and adopted by the OSF (now the Open Group).
The LVM implementation in HP-UX is based on this.

To be able to use the logic block devices provided
by the LVs under Linux too, and to set up filesystems
on them, an expansion of the Linux kernel is
necessary. This is done by means of a device driver.

Queuing magic
In this article, I will limit myself to the principle and
the application of LVM under Linux 2.4. If anyone
would like to delve somewhat deeper, I would advise
studying the source code of the kernel and Linux LVM
– assuming you have knowledge of C. Hence this
article will also make references to these sources.

Under Linux 2.4, in addition to elementary
functions such as open, close, read and write, a block
device driver registers a make request function, which
is invoked by a central function of the Linux block
device layer (see /usr/ src/ linux/ drivers/ block/
ll_rw_blk.c; functions ll_rw_block, submit_bh and
generic_make_request), before an I/O request is
ranked in a device-specific queue.

Queues serve the best possible processing of I/O
requests, by holding these for a (very) short time in
the queue (device plugging). This is in order to put
them in the best possible sequence before they are
passed on to the device for processing (such as an
ATA-adapter) (device-unplugging).

Since LVM has to convert between logical and
subordinate (physical) devices, it implements a re-
mapping driver. This contains its own make request
function and registers it, so that before submitting a
request (call up of generic_make_request in /usr/ src/
linux/ drivers/ block/ ll_rw_blk.c), it can perform
manipulations on its administration data.

The administration data relevant to us is in the
buffer_ head structure, which is set up by the kernel
for each buffer containing I/O data. All I/O data

One of the most important requirements in the
field of professional IT is to be able to
reconfigure computer systems online and

without halting operations. In this regard, logical
volume management plays a major role. The
advantages are obvious: time and costs are saved, as
back up and restore tasks are dispensed with, and
applications don’t have to be interrupted, so there
are no expensive system stoppages.

This is achieved by decoupling block devices and
physical disk partitions. The latter, as physical storage
media (Physical Volumes, PVs for short) form the
lowest level of a three-level architecture. One or more
PVs are combined on the second level into virtual
disks (Volume Groups, VGs). The full memory capacity
(minus a small metadata portion per PV) can be
assigned to virtual partitions in the third level (Logical
Volumes, LVs). The LVs are addressed as regular Linux
block device files, so that any filesystems can be set
up on them (see Figure 1).

HP-UX as godfather
When LVM is used, physical
disks can be added to a system
and the capacity of existing
volumes can be assigned to
them. After many years of
experience with commercial
LVM variants of HP, IBM, Sun
and Veritas, my fingers were
itching to expand Linux by LVM
functionalities. The LVM project
started in February 1997, and
version 0.1 was launched in July
1997. After some wide-ranging
functional expansions in the
past few years, version 1.0 was
released in August of this year.

Since the LVM in HP-UX
displays a highly intuitive
command line interface and

A Logical Volume

Manager (LVM)

makes it possible to

adapt disk capacity

to dynamically

changing

requirements while

the system is still in

use. Heinz

Mauelshagen

explains why LVM is

indispensable for

business-critical

applications

Figure 1: The three-level memory
architecture of the Linux LVM

KNOW HOW

57LINUX MAGAZINEIssue 16 • 2002

buffers in the disk cache – which the kernel
maintains and dynamically adapts in size for
performance reasons – have a buffer_head structure.

Linux 2.4, unlike Version 2.2 and predecessors,
now only performs caching in a page cache and uses
buffer_ head only at the interface with the block
device layer, whose central function is ll_rw_ block.
buffer_head (see /usr/ src/ linux/ include/ linux/ fs.h)
has, in addition to several members, a real sector
address – b_rsector – and the address of a real device
– b_rdev – as content.

After opening a logical volume (LV) by mke2fs
there follows some read and write accesses, so as to
save the Ext2 filesystem structures on it. The
ll_rw_block calls executed at this point lead directly to
the invocation of the LVM driver Make-Request
function, which is called the lvm_make_request_fn
and is defined in /usr/ src/ linux/ drivers/ md/ lvm.c.
The function invoked by lvm_make_request_fn,
lvm_map requires a table in which the addresses of
the devices – namely those of the physical volumes
and the sector addresses thereon – are listed.

To avoid the need for a table entry for every
individual sector – which would end up as a gigantic
table – a number of sectors lying one behind the
other are combined into physical extents (PE) and
assigned one to one in the logical address space of
LV, as logical extents (LE) of the same size. The
mapping table thus contains an entry for each
assigned PE, describing the address (b_rdev) and the
real start sector (b_rsector) on the respective PV
(Figure 2).

LVM application
Once all the LVM elements (PV, VG, LV, LE and PE)
have been pre-set, it’s the turn of the application
itself. Similarly to PVs, whose names are defined by
the device files issued by Linux (such as /dev/ hdb2),
VGs and LVs also receive a name when they are re-
made. VG names appear in the form of subdirectories
in /dev/ and LV names appear as block device files in
the VG subdirectories.

The user interface of the Linux LVM is implemented
as a CLI (Command Line Interface) with 35
commands, which correspond to the three levels of
the memory architecture. All commands for
manipulation of the PVs begin with pv; all those for
the VGs with vg; and those belonging to LVs with lv.

Since almost every level is involved with creating,
removing, displaying, extending, reducing,
renaming, scanning or changing attributes, most of
the command names are produced from a
combination of the prefixes pv, vg or lv with these
abilities (Table 1).

In addition to these, there are commands for
backing up and restoring the metadata stored on
the PVs; to move VGs from one system to another;
to combine two VGs into one or to split up one
VG; to move LEs or LVs of assigned PEs; and to
change the size of an LV including the Ext2
filesystem (Table 2).

Don’t be scared off by the number of commands
at this point, since only three commands are
necessary to create the first LV: pvcreate, vgcreate
and lvcreate. There are manuals available for all the

Table 1: Basic LVM commands
pvcreate Create a PV
pvdisplay Display the attributes of PVs
pvscan Scan for existing PVs
pvchange Alter attributes of PVs
vgcreate Create a new VG
vgremove Remove an empty VG without LVs
vgextend Extend a VG by additional PVs
vgreduce Reduce a VG by empty PVs
vgdisplay Display the attributes of VGs
vgrename Rename a VG
vgscan Scan for existing VGs
vgchange Change attributes and activate/deactivate VGs
lvcreate Create an LV
lvremove Remove inactive LVs
lvextend Extend an LV
lvreduce Reduce an LV
lvdisplay Display the attributes of LVs
lvrename Rename an LV
lvscan Scan for all existing LVs
lvchange Change attributes of an LV

Figure 2: Example of the mapping of
an LV onto two different PVs

lvcreate -n melv -L100 mevg

which creates an LV named melv (my first LV) with
100Mb. This LV has the device name /dev/ mevg/
melv. Via

mke2fs /dev/mevg/melv

a filesystem can now be installed, which can be
mounted as usual in any directory of your choice that
uses a normal partition-based filesystem.

These first few steps do not yet display any
particular strengths since all we have done is create a
virtual partition on a physical one. If the LV becomes
too small and there is still free capacity in the VG, we
can expand it without re-installation or a reboot. This
is done with the command

lvextend -L+200M /dev/mevg/melv

which adds a further 200Mb to the 100Mb. Since the
filesystem stored in the LV is not (yet) automatically
expanded at the same time, a filesystem command
has to take over this task. If one uses Ted Ts’o’s
resize2fs, the filesystem must not be mounted; on
the other hand, Andreas Dilger’s ext2online is capable
of expanding Ext2 filesystems in mounted condition –
providing you have the necessary kernel patch for
this:

resize2fs /dev/mevg/melv

Both tools are supported by the e2fsadm program,
which is supplied with Linux LVM, which executes
lvextend and resize2fs in Ext2 resizings.

e2fsadm -L+200M /dev/mevg/melv

Figure 3 shows the main inputs and outputs for the

KNOW HOW

58 LINUX MAGAZINE Issue 16 • 2002

commands. To get you started, there is a basic
introduction with a list of all the commands (man
lvm).

Fdisk indispensable
To avoid unintentionally overwriting a partition
already in use with pvcreate, partitions must be set
via fdisk to the type reserved for LVM, 0x8E; only
then can pvcreate be used on them. It is in any case
advisable to create at least one partition, even if the
whole disk is to be used as PV under LVM. The
advantage is that this then appears under /proc/
partitions and is displayed in fdisk, so it simply cannot
appear unused later by mistake, if one invokes fdisk -
l, for example. The disadvantage – that the partitions
table (one sector) for the PV gets lost – is an
acceptable price to pay.

Simple practical examples
If you have created /dev/ sde1 as described and have
set the type to 0x8E, you can use

pvcreate /dev/sde1

to create a first PV, then with

vgcreate mevg /dev/sde1

a first VG named mevg (my first VG). If this is
successful, vgcreate automatically loads the necessary
metadata in the LVM driver, so that subsequently the
mapping tables of existing LVs are available or tables
of newly created LVs can be loaded. Seen another
way, vgcreate creates our first virtual disk, which (still)
contains a physical disk partition, and activates the
VG for further use.

The first LV is created with the command

Table 2: Extended LVM commands
pvdata Debug displays of the attributes of PVs
pvmove Move LV data online
vgcfgbackup Perform back up of metadata of VGs
vgcfgrestore Restore metadata on PVs of a VG
vgck Check consistency of metadata of VGs
vgexport Log off a VG, in order to move its PVs to another system
vgimport Make moved VG known to the destination system
vgmerge Combine two VGs into one
vgmknodes Remake the device files of VGs
vgsplit Split one VG into two
e2fsadm Change size of LV and Ext2 file system
lvmchange Reset LVM
lvmsadc Collect statistical data
lvmsar Display collected statistical data
lvmcreate_initrd Create initial RAM disk to boot with root file system on LV
lvmdiskscan Scan for devices supported as PV

Figure 3: Installing and expanding a filesystem

KNOW HOW

59LINUX MAGAZINEIssue 16 • 2002

little sample session. The last two commands
(lvextend and resize2fs) can be replaced by calling up
e2fsadm (see Figure 4).

Since expanding or newly creating LVs can easily
make our VG reach the limits of its capacity, it’s
possible to add additional disk space after
installation. New PVs are created as described above.
If /dev/ sdb1 is available as an additional partition, the
new PV is initialised via

pvcreate /dev/sdb1

The VG mevg is then expanded using:

vgextend mevg /dev/sdb1

Then the extra storage space is immediately available
for the creation or expansion of LVs. If it is not
possible to install additional hard drives in advance,
all the steps for expanding the VG can be done
without rebooting. Owners of Hot-Plug SCSI do not
even have to reboot after installing new SCSI disks.

Removing disks
If you want to remove PVs from a VG, these must be
empty. In other words, none of their PEs must be
assigned to any LVs. This can be checked using the
instruction:

pvdisplay -v /dev/sde1

The mapping of a specific LV can be found with:

lvdisplay -v /dev/mevg/melv

If PEs are occupied, but sufficient capacity is free on
other PVs of the same VG, the PV can be emptied
with

pvmove /dev/sde1

(the option -v displays the relocation of the
individual LEs). Data in assigned PEs can be

relocated to PEs of other PVs without data loss, with
the aid of pvmove. After that, the free PV can be
removed from the VG with

vgreduce mevg /dev/sde1

to add it to another VG whose capacity has now
become too small, for example.

Another instance when pvmove may be used is to
replace partition A on a disk, which is too small or
too slow (/dev/ sde) by a larger or faster one (B on
/dev/ sdb). Provided there is a free connection for B,
one would first add this to the VG, in order to then
move all data with

pvmove /dev/sde1 /dev/sdb1

from A to B. If only A and B are contained in the VG, it
is superfluous to specify the device file of B (/dev/ sdb1),
since apart from this, no other destination PV exists.
Figure 5 shows the expansion and reduction of the VG
together with the relocation of data with pvmove.

You’ve been introduced to some of the standard
applications of the Linux Logical Volume Manager.
For more in-depth information, the LVM-Howtos and
the general guide over at http://www.sistina.com are
highly recommended.

The author
Heinz Mauelshagen is the
author of the Logical
Volume Manager for
Linux. He works at Sistina
Software, Inc., which
specialises in file system
development; in addition
to LVM, they also
maintain GFS.

Alessandro Rubini & Jonathon Corbet – Linux
Device Drivers (O’Reilly)
LVM HOWTOs http://tech.sistina.com/lvm/

doc/lvm_howto
LVM homepage http://www.sistina.com/

products_lvm.htm

Info

Figure 4: Instead of calling up lvextend and resize2fs
separately, one can also use e2fsadm

Figure 5: pvmove
relocates data onto
other disks

