
212.5

DNS

KNOW HOW

46 LINUX MAGAZINE Issue 18 • 2002

The pitfalls of DNS

DNS SUBTLETIES
divides up the features of a DNS implementation –
caching, normal queries, answering zone transfers –
into separate programs, making it easy to only
provide the functionality you require on a particular
server. Microsoft’s Windows NT does also provide a
DNS server, but I will not be discussing it here.

More about security
Don’t forget to subscribe to a relevant mailing list for
security alerts – probably the one run by your chosen
GNU/Linux distributor. Ensure you are running up-to-
date versions of your software; 8.1.3 or 9.2.0 for
BIND, 1.05 for djbdns at the time of writing.

It is well worth disabling zone transfers except
from approved machines (with the allow-transfer
statement, when using BIND); this should normally
only be those machines that slave zones off a
particular DNS server. This will prevent the black hats
from grabbing a complete copy of your zone and
looking through it for attractive targets, and (possibly
accidental) DoS attacks on your server under with a
series of zone transfer requests. If you run a “hidden
primary” configuration, you may be able to disallow
all requests to that server except from its slaves, not
just zone transfers.

Do firewall off port 53 except to servers that
actually provide a DNS service to the outside world;
don’t make the mistake of permitting only UDP port
53 because ‘only zone transfers use TCP’ – any reply
over a certain length will use TCP port 53.

Consider also filtering outgoing port 53; you’ll
want to ensure that outgoing requests come only
from the server or servers you want them to,
especially if you’re running a multiple horizon set-up
– a set-up where the same domain has different
data for internal users and external queries, which is
very common if you don’t want random people to
know all the names of your internal machines.
However, this is only appropriate if your internal
machines’ IP addresses can never be used on the
public Internet (owing to some kind of NAT
arrangement, perhaps using the RFC 1918 reserved
ranges) – if their IP addresses are visible, they ought
to have names, too!

Reliability
Various system-monitoring scripts exist which can
monitor several DNS servers and check they are all
still answering queries; however, when setting up

Alternative DNS servers
It’s not compulsory to use the ISC’s BIND package for
DNS, and not everyone does; even if you do use
BIND, you have a choice between the more stable
and better understood version 8, or the relatively
new version 9. Version 9 introduces some ingenious
new features, some of which I will discuss below,
but is probably more prone to new security holes
being found and to general instability. I wouldn’t
suggest using version 9 unless you need one of
these new features.

The other viable alternative is a package by Dan
Bernstein (DJB) called “djbdns”, available from
http://cr.yp.to/djbdns.html. Djbdns is free of cost,
but the license is not Open Source (although the
source is open for inspection), meaning your
GNU/Linux distribution probably does not include it;
a more serious drawback of djbdns is that it
assumes that you wish to organise your systems
exactly as DJB would; and of course article authors
will persist in being awkward and discussing
everything in terms of BIND.

However, djbdns is believed to be extremely secure;
at this time, no security holes in it have been
exploited, and plenty of people have been looking –
DJB offers a reward of $500 for finding one. BIND, by
comparison, has been compromised all too often. If
you are paranoid and want to run a DNS server that
provides a service to the whole world or to possibly
malicious people, djbdns may be for you. Djbdns also
offers superior performance, but that’s unlikely to be
an issue except for the largest of sites.

The most ingenious feature of djbdns is that it

DNS is a distributed

system that handles

the correspondence

between hostnames

and IP addresses. In

this article Wednesday

White aims to discuss

some of the more

interesting cases that

you may fall afoul of

once you’ve got a

basic DNS

implementation up

running

If you’re running DNS in anything other than your home, pretty soon you’re
going to want to have more than one DNS server. But how many? In medium to
large sized organisations, DNS servers can serve many functions. You’ll want
lightweight caching-only servers over a large network, to provide low latency
answers to users; you’ll also have nameservers that are connected to the public
Internet, both to pass requests out from internal users and to provide
information about the domain or domains you run yourself – and you probably
want these to be separate machines, since the machines that accept requests
from the outside world are necessarily more of a security liability and will ideally
be placed in a DMZ. If you run a multiple horizon set-up, you’ll need a second
set of nameservers that provide the internal view of your domains.

Multiple DNS servers

56.201.11

KNOW HOW

47LINUX MAGAZINEIssue 18 • 2002

such a thing, it’s all too easy to ensure that the failure
of a single monitoring machine or of your mail
system completely disables alerting! Be careful. It’s
not much good having several DNS servers if they are
all on the same network subnet where the failure of
a single router or switch can take them all out; try to
ensure that all your DNS servers could only be
rendered inaccessible if the network was completely
unusable. If your organisation is large enough to have
more than one route to the Internet, try to ensure
that your DNS architecture has at least one server
using each one.

Conversely hardware for DNS servers does not
need to be hugely expensive – although shelling out
a little more is often worthwhile. The DNS is
designed so that at every stage of the process,
systems can have a choice of three or more servers
to query; if you have avoided the network problems
above, you will survive the failure of any particular
server. However, you should ensure that you have
copies of the configuration for each DNS server you
possess in a number of places; then, when a
particular machine suffers a terminal hardware
failure, you can very easily produce another system
with the same configuration to replace it –
particularly if you use Free operating systems on
cheap hardware, and can hence readily have spare
machines with an OS installed ready to be used at
any time.

Hidden primary
A “hidden primary” configuration is one where the
master for a particular zone is not actually
mentioned in the NS records for that zone at all;
instead, a set of machines all of which slave the
zone off it are mentioned. This has some
advantages; the hidden primary never receives any
DNS requests except approved zone transfers (no-
one knows its name, and it need not even be willing
to answer them), so will not be heavily loaded even
if you run all your zones off it; and if you make an
error editing a zone file and the nameserver refuses
to load it, none of the nameservers that anyone
actually uses will be refusing queries because they
have no data for that zone. The benefit of
concentrating all your zone files in one place without
performance worries is considerable, and should not
be overlooked.

Multiple horizon
Traditionally multiple horizon setups have required
two complete sets of nameservers, which is a pain.
BIND 9 added the “split view” facility that, with
appropriate configuration, allows you to load two
different sets of zone files and answer requests based
on the IP address of the calling client. In a hidden
primary setup, the primary can use split view – with
reduced security worries, since although it will run

BIND 9 it need not accept DNS traffic from random
machines at all – to serve both internal and external
zone files to its slaves, permitting you to concentrate
all editing on one machine.

A simplification of multiple horizon setups is to use
a separate domain for all your internal entries; if your
world-facing domain is “example.com”, ensure that
all your internal machines are in “internal-
example.com” (however, you should ensure you
register this domain) – then your multiple horizon set-
up need only ensure that your world-facing DNS
servers believe they are authoritative for it and load
an empty zone file for it.

Reverse DNS
Reverse DNS is something that is traditionally messed
up; but I’d encourage you to make a break with
tradition and get it right! Very few people do; ISPs
are some of the worst offenders, with plenty of
Internet-accessible machines (usually routing
hardware) lacking reverse entries.

If a given IP address is in use – if a computer has it
assigned, or if any forward DNS entry resolves to that
IP address – that IP address ought to have a reverse
DNS entry; and that reverse entry ought to resolve to
a name which can itself be looked up to yield the
same IP address. Note that it’s not a problem if
elephant.example.com resolves to 192.168.53.76 and
192.168.53.76’s reverse entry is rhino.example.com –

Unfortunately there are more common errors than this; these are just some of
the more awkward ones.

● The standards specify that an MX record – used for mail delivery – cannot
point to a CNAME. Unfortunately, this usually appears to work OK, and so
goes unfixed; nevertheless, it is a surprisingly awkward case for authors of mail
transfer agents to get right, and should be eliminated. MX records should
always point to A records.

● When editing a zonefile, leaving the trailing dot off a fully qualified domain
name is an incredibly common error; this of course results in the zone being
appended to the entry, producing absurdities like “reverse entry for
192.168.53.90 is snake.example.com.53.168.192.in-addr.arpa.” It’s easy to
do; the answer is always to test an entry immediately after changing it and
reloading the nameserver.

● A particular IP address can have multiple A records pointing to it; a common
error is to fail to notice that a reverse record already exists when adding a
second A record pointing to a given IP address, and add a second IP address,
which causes the nameserver to reject the reverse zonefile. The simplest
answer is to keep reverse zonefiles sorted – then the previous reverse entry will
be obvious when you try to add the new bogus one.

● Failing to increment the serial number when editing a zone file causes remote
nameservers not to think the zone has changed. Unfortunately, this is just a
matter of training yourself not to forget – or using a tool like h2n that does it
for you.

Some common errors

212.56.201.1

they will find a CNAME to 73.64/27.53.168.192.in-
addr.arpa ; they will find that 64/27.53.168.192.in-
addr.arpa is delegated to you, and ask your name
servers; and they will return the answer
‘giraffe.example.com’.

Alternatives to editing zone files
It’s not really an alternative, but a lot of the pain of
editing zone files can be alleviated by using a
version control system such as GNU CVS. If you
have more than one person editing zone files, I
would go so far as to say that this is an absolute
requirement.

Beyond that, the venerable h2n script transforms
lists of hosts and IP addresses into correctly formed
zone files; it can readily include other chunks of
zonefile, for things you cannot describe as host-IP
pairs (like MX records). It increments the serial
number eliminating another common source of error.
If you aren’t doing anything overly complex, ensuring
you edit lists of hosts and then run h2n on them can
greatly simplify DNS maintenance.

If you want to get more sophisticated, you will end
up writing your own Perl scripts to find free
addresses, free up old addresses, check the
correctness of zonefiles, make the coffee, and so
forth. This can certainly be an interesting project (and
provides for people who faint at the words ‘text
editor’), but is probably overkill unless you really are
running a huge DNS set-up.

Some proprietary software vendors make “IP
management” software; in my experience these are
clunky, slow, painful to use, and do not provide even
the most basic sanity checking. Steer clear.

DNSSEC
This is perhaps the most significant improvement in
Bind 9. The DNS is very vulnerable to ‘spoofing’ –
insertion of bogus data into caches designed to
misdirect traffic to the wrong machines.

A detailed discussion of DNSSEC would require
another article, but essentially DNSSEC uses public
key cryptography so that a zone can sign its
subzones; hence, if I have a public key for
“example.com” and I receive data for
“animals.example.com”, my nameserver can check
that the source of data for “animals” has a public
key signed by the owner of the private key for
example.com, and hence that the data comes from
an approved source. Ultimately, of course, the key
signing “web” will come down from the root
nameservers, so it will not be necessarily to trust any
keys at all – the key for example.com will be signed
with the key for .com, which will itself be verified by
the root nameservers.

The BIND 9 Administrator’s Manual contains a
discussion of the necessary steps to get DNSSEC up
and running; it’s worth a look.

KNOW HOW

48 LINUX MAGAZINE Issue 18 • 2002

provided that rhino.example.com also resolves to
192.168.53.76.

The first problem that you will probably encounter
is that your ISP is unable or unwilling to delegate the
relevant reverse ranges to you. This is very common
with bargain-basement operations that will sell you a
domain and delegate you the forward zone, but find
reverse DNS to be a mystery. Normally this is just a
matter of persuasion, but it’s more difficult in the
case where your IP address range is not what used to
be a class A,B or C network (for example when your
subnet mask is not 255.0.0.0, 255.255.0.0, or
255.255.255.0).

Fundamentally, the design of the in-addr.arpa zone
used for reverse DNS is intended only to deal with
these cases, since it predates the CIDR system now in
use. If your ISP is not sufficiently competent, they will
tell you it can’t be done.

How can you deal with this? It’s detailed in RFC
2317; on your end it’s simple enough. You insert
zone file definitions starting like this;

zone “64/27.53.168.192.in-addr.arpa” {

into your named.conf – this one would be to deal
with reverse entries in the 192.168.53.64/27 subnet,
which contains 32 IP addresses. (Of course, the IP
addresses here are from the RFC 1918 reserved
ranges, and so would never be used on the global
Internet.)

Your ISP – which controls 53.168.192.in-addr.arpa,
we hope – delegates 64/27.53.168.192.in-addr.arpa
to you with lines like this in the zonefile for
53.168.192.in-addr.arpa ;

64/27 NS <your name server>
64/27 NS <your other name server>

They also create one entry for each IP address in your
subnet, like this;

64 CNAME 64.64/27.53.168.192.U
in-addr.arpa.
65 CNAME 65.64/27.53.168.192.U
in-addr.arpa.
(and so on for 30 more entries up to)
96 CNAME 96.64/27.53.168.192.U
in-addr.arpa.

Of course this is a pain, but they only have to do this
once and all these entries can be automatically
generated. Now you can create entries in your
zonefile for 64/27.53.168.192.in-addr.arpa like this
one;

73 PTR giraffe.example.com.

Now if someone looks up 73.53.168.192.in-addr.arpa

If
your

ISP is not
sufficiently
competent,

they will
tell you it
can’t be

done

