
KNOW HOW

42 LINUX MAGAZINE Issue 18 • 2002

In the second article

in this series Bruce

Richardson looks at

how Kerberos can be

used to implement a

centralised network

authentication

system

What is Kerberos?
Kerberos is an authentication system designed to
provide secure remote authentication and encrypted
access to network services based upon that
authentication. It’s fast, relatively easy to set-up, an
open standard and Open Source software (though
proprietary implementations of the standard also
exist).

Kerberos was developed at MIT as part of Project
Athena, the university’s distributed network
computing project. Kerberos is also the name of the
three-headed dog which, according to Ancient Greek
legend, guards the entrance to the underworld. Due
to its strong encryption, the full MIT Kerberos code is
classed as a munition and cannot be obtained outside
the US. To get around this, a version of the code was
stripped of all the encryption (and given the slightly
ghoulish nickname “E-bones”. Developers at the
Royal Institute of Technology in Stockholm then re-
implemented the encryption. Their version of the
code is called “Heimdal”, named after the Viking god
who guards the entrance to Valhalla.

The Kerberos protocol is currently on version 5.
Version 4 was the first version that was stable and
secure enough for practical use but has significant
disadvantages compared to V5 and should be treated
as an item of historical interest only.

How does it work?
The Kerberos authentication system is based on
tickets. It involves a simple 3-step process:

● You identify yourself to a service.
● The service grants you a ticket.
● You use that ticket to get access to network

resources.

The first time you go through this process is when
you login to your Kerberos realm. In step one you
identify yourself to the Key Distribution Centre (KDC)
by giving it your password. The KDC grants you an
initial ticket. This ticket will act as proof of your
identity until it expires (eight hours is the default
lifetime).

When you access a Kerberos-aware service (see the
section called Kerberos-ready applications) you go
through this process again. In step one you identify
yourself to the service by showing it your initial ticket.
The service checks your ticket with the KDC and then
gives you another ticket, which enables you to access
its resources. That ticket is usually good for one
session (login session, mail retrieval or whatever). Due
to the initial ticket’s role in getting you further tickets
it is usually referred to as a Ticket Granting Ticket
(TGT).

The Kerberos network model
To understand how Kerberos works you should be
familiar with the key components of a Kerberos
network.

The Realm is the organisational unit of the
Kerberos network, comparable in may ways to the NT
domain. Each Realm is associated with a KDC and
Admin. server. It is entirely up to the system
administrator how realms are named and which
users/machines/services are members of which
realms. The convention, however, is to map Kerberos
realms to DNS domains and to give the realm the
same name as the corresponding domain, only upper
case (realm names are case-sensitive). So the realm
for charity.org would be CHARITY.ORG.

If no domain is specified, as a command-line
argument or in a config file, Kerberos software
will assume that this convention has been
followed. It is possible to establish trust
relationships between realms, so that users on one
realm may access services on another. This article
does not go into that.

Each realm has at least one Key Distribution
Centre, which stores the password database and
grants Ticket Granting Tickets. If a realm has more
than one then one is the master and the others are
slaves, synchronising their databases from the master.

It is essential to keep your KDC secure: if it is
cracked then your whole network is compromised.
The administration server allows the Kerberos
database to be manipulated remotely, enabling an
administrator to add accounts, change passwords

Linux Authentication: Part 2

THE KERBEROS NETWORK
AUTHENTICATION SYSTEM

KNOW HOW

43LINUX MAGAZINEIssue 18 • 2002

etc. It is not essential to run one: you could make all
changes while directly logged in to the KDC, which
would be secure if limiting. Admin servers are usually
run on the same host as the KDC for convenience
and security but this is not a requirement.

Tickets
Every service available through Kerberos requires a
ticket. Each service requires a different kind of ticket
but all tickets have these things in common:

● They are issued to a specific principal, granting
access to a specific service.

● They have a fixed lifetime, after which they expire
if not explicitly renewed.

● They are issued for a specific host. That is, by
default they can only be used from the host on
which they were requested (see the section called
A typical user session).

Credentials cache
The Credentials cache stores all the tickets you have
been issued during your current Kerberos session. By
default this is a file in /tmp readable only by you, but
this is configurable. It is possible to open multiple
concurrent Kerberos sessions, in which case you will
have multiple caches.

A typical user session
Fred is already logged on locally at his Linux
workstation but hasn’t yet logged in to the Kerberos
realm. To do this he uses the kinit utility:

$ kinit
fred@CHARITY.ORG’s password:

Because the local kerberos config files do not specify
a domain and because he passed no special
arguments to kinit, kinit assumes that his principal
name matches his local account name and that the
realm is the upper-case version of the local DNS
domain. Luckily, this is correct and once he has typed
in his password he is issued a TGT.

The hosts on Fred’s network run kerberised telnet
daemons. Fred decides to log into his network’s
mailhost:

$ telnet -x -l fred mailhub.charity.org
trying 192.168.10.12...
Connected to mailhub.charity.org
(192.168.10.12)
Escape character is ‘^]’
Negotiating encryption...
Last Login: Dec 22 14:03:45 from
workstation.charity.org
$

Note that Fred didn’t need a password and that his
Telnet session is encrypted.

At this point, Fred remembers that he has
something he needs to do on the proxy server. So:

$ telnet -x -l fred squid.charity.org
trying 192.168.10.1...
Connected to squid.charity.org (192.168.10.1)
Escape character is ‘^]’

Debian GNU/Linux 3.0 squid

squid login:

Oops. Fred forgot that Kerberos tickets are, by
default, only good for one host. His TGT is no good
on mailhub – in fact they don’t even exist on
mailhub, having been left behind on workstation. So
the kerberised telnet service fell back on the plain old
unencrypted and insecure standard.

Now, Fred could run kinit on mailhub but that
would be insecure: the whole point of kerberos is

A Kerberos principal is roughly analogous to a
Unix account. It may represent a human user, a
machine or a network service. Principal names are
constructed from up to three components (in
practice you will never see more than two) and
the realm name, in the form
component/component/component@realm. The
first component is referred to as the name, the
second as the instance and there is as yet no
standard use for the third.

A typical principal name would be
fred@CHARITY.ORG. Just as there is a convention
to map realm names to DNS domains, so there is
one to name user principals after Unix accounts.
As a result, user’s principal names often match
their e-mail addresses.

If Fred were an administrator then he would
usually also have an account
fred/admin@CHARITY.ORG, which he would use
to access the admin server. Note that although
this extra account is referred to as Fred’s “admin
instance” there is in fact absolutely no link
between the fred@CHARITY.ORG and
fred/admin@CHARITY.ORG. They are completely
separate principals with different passwords and
network privileges. Fred could log into the admin
server as vendingmachine/repairman@CHARITY.ORG
if there were such an account. It is simply the
convention to name organisationally related
accounts in this way. If Fred runs the kadmin
utility without specifying a principal then it will
assume that fred/admin@CHARITY.ORG is the
principal as whom it should try and connect.

Principals

using the -f option then he will be able to telnet
without a password from there to squid but not from
squid to anywhere else.)

For a glimpse under the hood of Kerberos, have a
look at the sidebar A Kerberised Telnet session in
detail, which gives a detailed technical account of
how the telnet session is authorised. One thing to
take particular notice of is the paranoid and secure
fashion in which Kerberos creates an encryption key
for the session. It is this key which provides the
mechanism for encrypting the subsequent telnet
communications. In this fashion any properly
kerberised application can enjoy the benefits of
secure encrypted operation across the network.

Using Kerberos on your network
Unless you are a highly skilled developer, there are
essentially two ways to use Kerberos on your
network:

● Install services (and clients to access them) which
have already been developed to use Kerberos. Do
check the documentation to see how fully the
application supports/uses Kerberos: some
applications only use it for authentication, others
make full use of its features to enable secure,
encrypted communication.

● Install services/clients which use a generic high-
security mechanism (e.g. SASL, GSS-API) that can
use Kerberos as a backend. These generic security
layers are actually more complex than Kerberos
and an application that properly supports them can
make full use of Kerberos security.

KNOW HOW

44 LINUX MAGAZINE Issue 18 • 2002

To give an idea of how paranoid Kerberos security is,
here is that Telnet session in detail:

● Fred sends a request (using his Ticket Granting
Ticket) to the KDC: “I want to talk to the Telnet
daemon on charity.org” (well, the kerberised Telnet
client does it but let’s keep this simple).

● The KDC generates a new session key, which Fred
and the Telnet daemon will use to secure their
communication.

● The KDC sends two messages to Fred: the first
contains a copy of the new key and the name of
the remote Telnet daemon and is encrypted using
Fred’s key. The second contains a copy of the new
key and Fred’s name and is encrypted using the
Telnet daemon’s key (and is Fred’s “ticket” to talk
to the Telnet daemon).

Note: The KDC is not involved from this point on.

● Fred decrypts the first message (he can’t decrypt

the second as he doesn’t have the key) and
extracts the new session key.

● Fred creates a message containing the current time
(the “authenticator”) and encrypts it using the
session key.

● Fred sends the new message and the ticket he
received from the KDC to the Telnet daemon.

● The Telnet daemon decrypts the ticket from the
KDC (passed on to it by Fred) and extracts the
session key and Fred’s name.

● The Telnet daemon uses the session key to decrypt
the authenticator from Fred and checks the time.

● At this point, Fred has authenticated himself to the
Telnet daemon and they can use the session key
for further communication. But Fred may want the
Telnet daemon to authenticate itself to him, in
which case:

● The Telnet daemon takes the timestamp from
Fred’s authenticator, adds its name and encrypts
the result with the session key to create its own
authenticator, which it sends back to Fred.

A Kerberised Telnet session in detail

that your password is not transmitted across the
network. So he logs out of mailhub, returning to
workstation. Out of curiosity he checks to see the
details of the tickets he has acquired so far:

$ klist
Ticket file: /tmp/krb5cc_1002
Principal: fred@CHARITY.ORG
Issued Expires Principal
Jan 05 12:37:22 Jan 05 20:37:22
krbtgt/CHARITY.ORG@CHARITY.ORG
Jan 05 12:38:12 Jan 05 20:37:22
host/mailhub.charity.org@CHARITY.ORG

This shows him the original TGT and the Telnet ticket
from mailhub. Note that the Telnet ticket expires at
the same time as the TGT used to obtain it: a service
ticket may expire before the original TGT but may not
outlive it.

But Fred wants to start afresh, so

$ kdestroy
Tickets destroyed
$ kinit -f
fred@CHARITY.ORG’s password:

His new ticket is now forwardable. If he re-runs
Telnet, adding an -F option, his TGT will follow him to
the new host and to any other host he telnets into
from there. If he runs telnet with the -f option then
his TGT will follow him to the new host but will not
be further forwardable (i.e. if he telnets to mailhub

KNOW HOW

45LINUX MAGAZINEIssue 18 • 2002

● Install the PAM Kerberos 5 module and use that to
integrate Kerberos into your network
authentication policy.

Kerberos-ready applications
The Kerberos source comes with a selection of
kerberised replacements of standard Unix apps
(Telnet, ftp, rsh etc). While these are interesting to
experiment with they are based on creaky old
code and I wouldn’t advise using them seriously
on your network. Kerberised versions of the more
recent Linux apps are out there.

There is an ever-increasing number of serious
applications available using Kerberos
authentication, either directly or through GSS-API
or SASL. This includes PostgreSQL, OpenLDAP and
Cyrus IMAP. Of particular interest is Cyrus IMAP,
which will not only use Kerberos for
authentication and encryption but can also use it
to store group membership information (Cyrus
employs a sophisticated system of group and user
permissions to allow access to mail folders). Of
course, you’ll need a mail client that can use these
security mechanisms. Mutt is a good example for
Unix and the respected Eudora mail client does
the same for Windows.

One very interesting Kerberos-based application
is the Andrew File System, which uses the
Kerberos security model to provide a distributed
network filesystem. It’s rather more sophisticated
than NIS and much more secure!

PAM
PAM offers the crudest way to integrate Kerberos into
your network. PAM offers a relatively simple
authentication interface with no provision for the
encrypted communications features of Kerberos. Still, if
you add the kerberos module to the stack of the Linux
login app then it will authenticate the login against the
KDC, fetch a TGT, store it and destroy it when you
logout. If you combine the kerberos module with the
mkhomedir module, which automates the creation of
local home directories for newly authenticated users,
you can implement your own roaming logon system
(assuming you are fortunate enough to have Linux
desktops in your workplace).

Of course, you are all now PAM experts, having read
the first article in this series, and will find this no
challenge at all.

Working with Windows 2000
You may have heard that Active Directory bases its
security model on Kerberos. This is true and although
they have, as usual, “embraced and extended” the
protocol it is still possible to authenticate users
against an Active Directory server and even to create
trust relationships between Kerberos and Active
Directory domains. See the Info box for details.

Summary
If this article has done its job then you have learned
how Kerberos can bring centralised, secure
authentication, user administration and reliable
encrypted communications to your network. You’ve
seen practical examples of its use and an overview of
its architecture and philosophy. So why aren’t you
using it? What do you have that’s better?

Kerberos FAQ http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.
html

Heimdal http://www.pdc.kth.se/heimdal
Kerberos for Morons http://www.isi.edu/~brian/security/kerberos.html
Why not use Kerberos? http://www.redhat.com/docs/manuals/linux/RHL-7.2-

Manual/ref-guide/s1-kerberos-whynot.html
Win2K Kerberos Guide http://www.microsoft.com/windows2000/techinfo/

planning/security/kerbsteps.asp

Info

An admin session
Fred has to do some admin work on the Kerberos realm. First he needs to
connect to the Admin server. Because he doesn’t specify a principal, kadmin
assumes he wants to connect as fred/admin@CHARITY.ORG. Note that it is
only when he asks for Wilma’s details that he is asked for his password.

$ kadmin
kadmin: getprinc wilma
Principal: wilma@CHARITY.ORG
Expiration date: 2004-01-12 14:22:35
Last password change: 2001-12-22 09:31:05
Password expiration date: 2002-03-22 09:31:05
Last modified: 2001-12-22 09:31:05
(fred/admin@CHARITY.ORG)
Last successful authentication: 2001-12-21 09:35:43
Last failed authentication: 2002-01-05 11:20:19
Failed password attempts: 3
Number of keys: 1

If you look at the information Fred retrieved about Wilma, you’ll see that she’s
come back from holiday and forgotten her password. So

kadmin: cpw wilma
Enter password for principal “wilma”:
Re-enter password for principal “wilma”:
Password for “wilma@CHARITY.ORG” changed.

That done, Fred wanders off to get a coffee. When he comes back he finds
that he has to re-authenticate himself, as the Admin server has been set to
grant tickets with five-minute lifetimes to secure it against careless nerds like
him. This behaviour differs from that of the kerberised Telnet daemon, which
will not abort a telnet session once the ticket expires but will refuse to
authorise any fresh ones.

