
BEGINNERS

68 LINUX MAGAZINE Issue 18 • 2002

The Answer Girl

INSTALLATION
WITHOUT TEARS

Only the install command is invoked here, which
copies the file “mirror.pl” into the target directory
/usr/local/sbin and at the same time renames it as
mirror. There, using the mode option -m 755 it is
given the rights rwxr-xr-x and is assigned to the gnu
group (which must already exist) using -g.

If the commands to be executed by make install
are copied with the re-routing operator > into a file
to be archived (make -n install > filename), the
installation process can be reconstructed if you later
go on an uninstallation binge and delete
/usr/local/sbin/mirror and its consorts from the system
by hand with the rm command .

As soon as make install has to execute long-
winded, highly-complex shell scripts, which in turn
rely on the scripts which come with the source
package, the will to discipline will certainly no longer
suffice. A different approach is needed.

The Answer Girl
The fact that the world of everyday computing,
even under Linux, is often good for surprises, is a
bit of a truism: Time and again things don’t work,
or at least not as they’re supposed to. The
Answer-Girl in Linux Magazine shows how to deal
elegantly with such little problems.

Makefile: A file containing the instructions that
“make” should execute. If the GNU version of
make is not told, with the option -f, which file this
is meant to be, it searches methodically for a file
named GNUmakefile, makefile or Makefile in the
working directory.

mirror: A tool which “reflects” directory
hierarchies from one computer on to another, so
that there are identical copies.

There is one main

drawback to self-

compiled software:

whether or not it can

be neatly uninstalled

later depends on

your own discipline.

As Patricia Jung

explains, there is a

remedy at hand

Anyone who installs software via the rpm or deb
packages pre-compiled for their respective
distribution does so in the safe knowledge that, if
necessary, they can also be removed in the same
manner. Even is the process does leave behind dead
files on the system, this doesn’t detract from the
feeling of being blameless: if this happens then it was
the package compiler who did the sloppy work.

Even distributions well-equipped in terms of
software have to pass at some point: not every useful
program comes shake-and-bake for all distributions
and distribution versions. When the words “self-
compiling” appear, the moment of truth will arrive by
the time you get to make install if not before. If you
don’t keep track precisely, you’ll may well find the
installed binary and possibly the corresponding
manpage, but was that really all that this
inconspicuous command – executed with root rights
– has tucked away in the depths of your filesystem?

Work ban for make
There is a manpage for make, however, and this
explains that the -n option lists all commands that
come in to play during the handling of the Makefile,
although it doesn’t execute them. That’s no problem,
so long as this list is as clear and simple as it is in the
mirror package:

pjung<chekov:~/software/mirror$ make -n install
[...]
install -m 755 -g gnu mirror.pl
/usr/local/sbin/mirror
[...]

BEGINNERS

69LINUX MAGAZINEIssue 18 • 2002

rwxr-xr-x The ls option -l shows which users can
do what with a file or a directory – r, “read”, w,
“write”, execute (in the case of directories:
change to, x, “execute”) – or not (–). The first trio
of letters, rwx, says that the file owner can do
everything. The group to which the file is assigned,
on the other hand, only has read and execution
rights – it cannot alter (write) the file on the
grounds of the “–” in the middle trio. All other
users, too, only have the rights to read, execute or
change to. A different notation for rwxr-xr-x is
755. This is produced by coding r with 4, w with 2,
x with 1 and – with 0 and adding the values of a
trio: 4+2+1=7, 4+0+1=5.

/usr/local This directory,
which ideally sits on its
own partition, is intended
to keep locally installed
software on hand.
“Local” here means both
“not part of the
distribution”, and also (in
networks) “actually
installed on the hard
drive of this computer
and intended only for
this computer” (unlike
centrally stored resources
which may be made
available via the
“Network File System” or
NFS of the individual
workstations).

Header files If you want
to compile software
which uses the
functionality from
libraries dynamically, the
interfaces of this library –
the API (Application
Programmer Interface) –,
must be at hand when
the time comes to
compile. In C and C++
programs these are
found in so-called header
files with the ending .h.

To each his own directory
The simplest solution would be to accommodate
each self-compiled software package in a directory of
its own. The “Filesystem Hierarchy Standard”
(http://www.pathname.com/fhs) suggests
/opt/packagename for “add-on application software
packages”. However, another sensible alternative is
that of a package directory under /usr/local, even if
there is no provision for this in the FHS.

In this package directory a typical Unix directory
hierarchy with bin directory for user programs, sbin for
the binaries reserved for the system administrator “root”,
man for manpages, lib for libraries, include for any
header files etc. should then be made, provided the
software package concerned comes with suitable files.

So how do you persuade make install to copy into
such a directory? Apparently by modifying the file
makefile or Makefile. Once a back-up copy has been
made, it’s time to search for the Target install. The
Makefile does in fact specify the arguments with
which make can be invoked: only words that stand at
the start of a line therein and end in a colon are
permitted. The makefile from the mirror package is
very clear:

install:
[...]

install -m $(EXMODE) -g $(GRP) U

mirror.pl $(BINDIR)/mirror
[...]

Here we find, indented by precisely one tab character,
the commands to be executed by make install –
although concrete values are replaced by variables. A
comparison shows that $(BINDIR) is obviously
inserting the content of the variable BINDIR at this
point, and a few lines higher up BINDIR is assigned
the value /usr/local/sbin:

directory to install public executables
BINDIR = /usr/local/sbin

If we want to change the “directory to install public
executable files” into /opt/mirror/sbin, all it takes is
one correction in the makefile:

BINDIR = /opt/mirror/sbin

The challenge in this method consists only of finding
all variables relating to the installation step. This can
turn into production-line work in which many control
processes in terms of make -n install become
necessary. It often happens with such hand-written
makefiles, too, that the authors have not done tidy
work and have “unintentionally” included static path
specifications too. The only remedy for this is a
methodical search for the stubborn directory
specification.

There’s another problem too; if make install
complains, with an error message such as:

install: cannot create regular file U

`/opt/mirror/sbin’: No such file or directory

then the target directory /opt/mirror/sbin is missing
and must be made by hand. If the parent directory
mirror is missing as well as its subdirectory, sbin, then
you can save yourself a mkdir command if you use:

mkdir -p /opt/mirror/sbin

to make all the necessary parent directories at once.

Configure taken at its word
With software projects above a certain size it becomes
too tedious for most authors to wait for Makefile by
hand. In these cases they depend on automatic
Makefile production mechanisms. The drawback here
is that the Makefile gets very complex – one reason
why make -n install becomes difficult to decode.

This is offset by the advantage that the Makefile
creation tool is very easy to influence. If the
configure script that comes with a software package
correctly bears its name, it should also be possible to
specify the place to which the files already created
should be copied.

In fact configure speaks to the common help
option – – help – Listing 1 shows extracts from the
Help for the configure script of the mail program
sylpheed. Equipped with this information, with:

./configure –– cache-file=/tmp/sylpheed.tests U

–– prefix=/opt/sylpheed –– enable-ssl

we ensure that SSL support is included and all files
are stored on installation with make install under
/opt/sylpheed. – – cache-file allows a file to be
specified after the equals sign, in which the test
results found by configure are to be saved. Normally
the config.cache is in the current directory but here

BEGINNERS

70 LINUX MAGAZINE Issue 18 • 2002

Figure 1: Sylpheed running

Listing 1: Help for a configure script
pjung<chekov:~/software/sylpheed-0.6.5$./configure ––help | less
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]
Configuration:
––cache-file=FILE cache test results in FILE
––help print this message
[...]
Directory and file names:
––prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]
[...]
Features and packages:
[...]
––enable-ssl Enable SSL support using OpenSSL [default=no]
[...]

we have instead selected /tmp/sylpheed.tests.
Anyone who now goes off and makes changes in

the Makefile created, by the way, is doing this with a
safety net in place: should any manual corrections
turn out to be wrong, all you need do, instead of
the whole configure rigmarole, is say ./config.status.
This executable file saves precisely what needs to be
done to reach the same conclusion as the last
configure run.

A make compiles the software, while make install
makes an orderly Unix file tree under the prefix
directory and copies in the files needed to use the
software. In the case of Sylpheed, a bin subdirectory
is created under /opt/sylpheed containing the
executable program, plus a share directory, which
contains the online manual in HTML format.

Since /opt/sylpheed/bin does not lie in the search
path which can be displayed with echo $PATH, a
simple sylpheed& will not work (or starts a program
of the same name, which may already be in one of
the directories listed in the PATH). Only when the full
path to the binary is specified...

/opt/sylpheed/bin/sylpheed&

... does the new program start.

Forging paths
With an

export PATH=$PATH:/opt/sylpheed/bin

the PATH variable can be extended quickly and simply
into a shell. Use $PATH to fetch the previous content
of PATH and attach the new search directory following
a colon. The result is in turn assigned PATH as new
value. export ensures that the bash passes on the
variable to “child processes”, such as to a console,
which is started via console & from the current shell.

If you have already found a sylpheed binary in the
old path, this resetting will be precious little help,
since the shell always takes the file it finds first. If on
the other hand, when resetting the path, one places
/opt/sylpheed/bin before all previous search directories:

export PATH=/opt/sylpheed/bin:$PATH

... the tables are turned, and the binary previously
found without specifying the directory is now the one
that must be called up explicitly.

But who wants to have to change the path every
time he/she needs a program from a “non-standard”
directory? If all users of the computer are to get
something out of the path extension, it would be
advisable to enter the change from root in the
system-wide configuration file /etc/profile. (Some
distributions, such as SuSE, also read in files specially
designed for local changes, such as /etc/profile.local.)

If the path extension is only intended to apply for
your own user account (which makes sense for things
like software which one has installed in one’s own
home directory – such as under ~/bin –), then the
personal start files of the shell (for the bash~/.bashrc
and ~/.bash_profile) are candidates for correction.

No new paths
Anyone who does a lot of self-compiling will soon
get fed up with the constant path corrections –
especially since a multi-line PATH monster is no
longer easy to grasp. What a good thing there are
some alternatives. Links in a Linux/Unix filesystem
ensure that a file can be addressed by several names.
Instead of doing something like copying the sylpheed
binary from /opt/sylpheed/bin into the directory
/usr/local/bin and thus having two copies of it, a
“symbolic link” is all it takes

ln -s /opt/sylpheed/bin/sylpheed U

/usr/local/bin/sylpheed

to make the binary accessible using either
specification.

For fairly small programs like Sylpheed this is
enough – but woe betide you if you are dealing with
larger software packages, which create several

BEGINNERS

71LINUX MAGAZINEIssue 18 • 2002

Figure 2: Debian always comes
with the original source code

Mirror: A server which
“reflects” the data file of
another one, thus stores
it as a copy which is as
up to date as possible.
The tool “mirror” is
readily used for this
purpose.

Figure 3: With the prefix /opt/stow, stow
gets its own directory hierarchy

Figure 4: Info with info

binaries at the same time has lots of manpages and,
in the worst case, also come with their own libraries.
Nobody wants to set so many links by hand and you
certainly won’t want to remove them again if
/opt/sylpheed falls victim to the uninstaller rm -rf
/opt/sylpheed. Although the mini-program symlinks
can ferret out and delete any broken links that point
into oblivion, this useful tool is pre-installed on few
systems.

Now we can set about looking for a tool that will
take over the whole task of link management. Debian
users are lucky, since this distribution contains just
such a mini-program in the form of stow.

apt-get install stow

automatically downloads the corresponding package
(assuming you’ve got Net access) and installs it
immediately, provided root invokes the command.

But users of other distributions need not despair.
Any Debian software can be downloaded from a
Debian mirror not only as pre-compiled deb
package, but also as an original tarball from the
author of the software. The Debian download pages
on the Web (Figure 2) offer three links in the lower
part under the point Source Code: the package
specification as a dsc-formatted ASCII file, the
original tar.gz source archive and the source code of
the changes which the Debian package builder has
integrated into the binary package, as a diff output
packed with gzip.

The tar file is unpacked in the usual way with tar -
xzvf archivefile (the option -z unpacks the gzip
compression, -x extracts the content, -v provides a bit
more talkativeness in tar (“verbose”), and -f
archivefile states which file is to be unravelled). With

./configure –– prefix=/opt/stow

in the directory stow-1.3.2.orig we also configure
stow with a target directory of its own /opt/stow. For
once we can do without make, since on this occasion
there is nothing to compile. make install then
provides a file structure as in Figure 3.

Hidden treasures
So now stow may be installed, but a bit of
documentation wouldn’t go amiss. There is in fact an
info file in /opt/stow/info, but anyone not already
familiar with this information system will not have
much luck with

info -f /opt/stow/info/stow.info

(see Figure 4). An HTML file, which can be viewed in
the browser and printed out neatly formatted, is high
on the wish list.

The Makefile in stow-1.3.2.orig does in fact
contain a few useful secrets: even if we aren’t stow
developers, we need not be scared off by the
comment

The rules for manual.html and manual.texi U

are only used by
the developer

and make a note of the promising Make-Target
manual.html, which is defined thereafter:

manual.html: manual.texi
-rm -f $@
texi2html -expandinfo -menu U

-monolithic -verbose $<

BEGINNERS

72 LINUX MAGAZINE Issue 18 • 2002

The first line says that make is dependent in these
rules on making sure that the rules of the (later
defined) target manual.texi have been executed,
before its own (indented with Tab) commands
come into play. The first real action taken by the
manual.html target consists of deleting any file of
the same name which may exist ($< stands for the
target itself, thus that which is on the line which
is not indented before the colon) with rm -f
(“force”). Should there be an error message now
(perhaps because no such file as manual.html
exists), make should say nothing – hence the
minus before the rm command.

What really interests us is the second rule: the
texi2html program is, says its manpage, a
“Texinfo-to-HTML-converter”. Since $\ in the
make-syntax stands for whatever comes after the
target name and its colon, it soon becomes clear:
this target produces an HTML file from a file
(created by the manual.texi target) named
manual.texi.

We can see, in turn, from the texi2html
manpage, that the program – provided it is
invoked using the -monolithic option – creates
from a Texinfo-file named foo a single file
foo.html (instead of swapping footnotes and
tables of contents into additional, individual files).

The command make manual.html in the stow
source directory thus looks precisely as if it is
making our wish for a stow manual in HTML
format come true. There is in fact then a usable
manual.html in the current directory (Figure 5).

The way it should be
To use stow successfully, a few concepts need
clarifying. When the documentation talks about the
“stow directory”, we are dealing with the directory in
which the sub-directories with the file hierarchies of
the individual, compiled software packages are
found. In other words, the preparatory work for
using stow consists of specifying in each case the
prefix Stow-directory/packagename in the configure
run for a software package. In our plan, the stow
directory thus bears the simple name /opt.

Figure 5: Rewarded by a “make manual.html”

The next piece of information stow needs to know
is the directory hierarchy into which it should link the
contents of stow directory/packagename. A highly
suitable target directory is /usr/local, especially if
/usr/local/bin is already contained in the PATH.

The target directory and stow directory can be
specified with the options -t and -d, and the latter
option can be left out if we are dealing with cd /opt
in the stow directory.

Now we still have to link /opt/stow/bin/stow itself
in orderly fashion to /usr/local/bin/stow, before we
can call it up without specifying the path. An

/opt #./stow/bin/stow -v -v -v -n -t / U

usr/local stow
Stowing package stow...
Stowing contents of stow
Stowing directory stow/bin
Stowing contents of stow/bin
LINK /usr/local/bin/stow to U

../../../../opt/stow/bin/stow
Stowing directory stow/info
LINK /usr/local/info to ../../../opt/stow/info

gives us control over what would happen to the
content of the directory stow if we wanted to link it
to /usr/local: The option -n ensures in the meantime
that nothing happens, while each -v (“verbose”)
makes the program a bit more talkative; but this only
goes up to chatter level 3.

If directories which can be found under ./stow do
not yet exist in /usr/local (/usr/local/info for example),
the program ./stow/bin/stow certainly does not make
them. However it does make things easy for itself:
/usr/local/info points to /opt/stow/info. If the respective
directory already exists (which it does in the case of the
example of /usr/local/bin), stow sets a link therein to
the corresponding file (/usr/local/bin/stow points to
/opt/stow/bin/stow). For the source file stow specifies
relative paths starting from the target directory.

That looks sensible, so we do a good job with
./stow/bin/stow -v -t /usr/local stow and take a look
at the result:

/opt # ls -Al /usr/local
total 3
drwxr-xr-x 2 root root 55 Nov 26 20:02 bin
drwxr-xr-x 2 root root 150 Nov 26 18:28 ftp
lrwxrwxrwx 1 root root 22 Nov 26 20:02 U

info -> ../../../opt/stow/info
drwxr-xr-x 2 root root 57 Nov 26 18:28 man

The trouble with bugs
Before we get euphoric and start stowing other
software, we’d better first check if the promised De-
installation with the option -D really is that simple. If
/usr/local/bin lies in the search path, we can now call
up stow without specifying the directory:

BEGINNERS

73LINUX MAGAZINEIssue 18 • 2002

Info
mirror
http://sunsite.org.uk/pac
kages/mirror
sylpheed
http://sylpheed.good-
day.net
symlinks:
http://packages.debian.o
rg/unstable/utils/symlinks
.html
stow
http://packages.debian.or
g/stable/admin/stow.html

. Short notation for the
shell for the directory, in
which one is currently at.
Two dots (..) on the other
hand designates the
“parent directory” lying
exactly above the working
directory.

ls -A The option -A
makes sure that ls also
lists “hidden files”, whose
names begin with a dot.
Contrary to -a, the user
does not also see the
current (.) and the parent
(..) directory listed at the
same time.

/opt # stow -v -v -v -n -D -t /usr/local stow
Unstowing in /usr/local
Unstowing in /usr/local/bin
Unstowing in /usr/local/ftp
Unstowing in /usr/local/ftp/bin
Unstowing in /usr/local/ftp/dev
Unstowing in /usr/local/ftp/etc
Unstowing in /usr/local/ftp/lib
Unstowing in /usr/local/ftp/usr
Unstowing in /usr/local/ftp/usr/bin
Unstowing in /usr/local/ftp/msgs
Unstowing in /usr/local/man

That looks funny – why is /usr/local/info never
mentioned? Why is there nothing saying that
/usr/local/bin/stow is to be deleted? And what has
stow lost in subdirectories such as man and ftp, into
which it has linked nothing at all?

The brave will now back up the complete /usr/local
hierarchy and let stow -D run again without the -n
option. But this is no help, either:

/opt # ls -al /usr/local/bin
total 16
lrwxrwxrwx 1 root root 29 Nov 26 20:02 U

stow -> ../../../../opt/stow/bin/stow

The links are still there.
No matter how much we try, here and there, at

some point we have to swallow the bitter pill and
admit to ourselves: stow is faulty and inadequately
tested. It will only really function when the stow
directory containing the package subdirectories is
itself a subdirectory of the target directory.

It’s a good job we know what has been linked:

/opt # rm /usr/local/info
/opt # rm /usr/local/bin/stow

So we make a new stow directory stow under
/usr/local and pack our stow package directory into
that:

/opt # mkdir /usr/local/stow
/opt # mv stow /usr/local/stow/

Stowing
The advantage of the new stow directory is that we
no longer have to specify the target directory
/usr/local at the same time:

/usr/local/stow # ./stow/bin/stow -v stow
Stowing package stow...
LINK /usr/local/bin/stow to U

../stow/stow/bin/stow
LINK /usr/local/info to stow/stow/info

links correctly, and the deinstallation also looks
reasonable:

/usr/local/stow # stow -v -D stow
UNLINK /usr/local/bin/stow
UNLINK /usr/local/info
UNLINK /usr/local/bin/stow
RMDIR /usr/local/bin

Links are removed and directories which are now
empty such as /usr/local/bin are deleted. After re-
linking stow, /usr/local/bin points, as a newly-
made link, to /usr/local/stow/stow/bin.

To now install sylpheed neatly, too, we must
however reconfigure and compile the mail
program with new prefix /usr/local/stow/sylpheed,
before stow can pursue its linking work after a
make install:

/usr/local/stow # stow -v sylpheed
Stowing package sylpheed...
UNLINK /usr/local/bin
MKDIR /usr/local/bin
LINK /usr/local/bin/stow to U

../stow/stow/bin/stow
LINK /usr/local/bin/sylpheed to U

../stow/sylpheed/bin/sylpheed
LINK /usr/local/share to stow/sylpheed/share

... and this will give you a nice surprise:

/usr/local/stow # ls -al /usr/local/bin
total 0
lrwxrwxrwx1 root root 21 Nov 26 20:13 stow U

-> ../stow/stow/bin/stow
lrwxrwxrwx1 root root 29 Nov 26 20:13 U

sylpheed -> ../stow/sylpheed/bin/sylpheed

Suddenly /usr/local/bin is no longer a symlink to the
bin directory of the stow package, but an ordinary
directory, in which two new symlinks can be found:
After the old link to /usr/local/stow/stow/bin was
broken, the stow program was simply linked
independently. If we should now yearn to get rid of
sylpheed again, everything rolls itself neatly back
again:

/usr/local/stow # stow -v -D sylpheed
UNLINK /usr/local/bin/sylpheed
UNLINK /usr/local/share
UNLINK /usr/local/bin/stow
RMDIR /usr/local/bin
LINK /usr/local/bin to stow/stow/bin
/usr/local/stow # ls -al /usr/local/bin
lrwxrwxrwx 1 root root 13 Nov 26 20:14
/usr/local/bin -> stow/stow/bin

An rm -rf /usr/local/stow/sylpheed then ensures
that (apart from personal mail and configuration
files) there really are no remains left behind on the
system.

