
KNOW HOW

17LINUX MAGAZINEIssue 18 • 2002

If you’re lucky enough to have been to a Formula
One Grand Prix, then you’ll know that there is a
members’ area and a VIP area. By entering these

areas you’ll have immediate privileges and access not
afforded to the general public. A similar thing can be
said about Web pages. Most Web pages you will
want everyone to see, after all that’s the whole point
of the World Wide Web. On some pages, however,
you may want to restrict the viewing to members or
special users – VIPs, if you will.

You can protect Web pages based upon the calling
browser, IP address, domain name or simply via
password protection. We will look at the latter, which
is more commonly known as basic authentication.
We will also look at how to personalise those nasty
error messages that get thrown in your face when
you try to go to a page that is missing (see Figure 1.)
or to an unauthorised area.

The challenge/response process
First look at the process involved. Here’s how it goes:
you point your browser to a Web page protected by
a username and password. The Web server then
looks for a file in that directory called .htaccess, if
that file is present it reads the directives
(configuration) to obtain the type of authentication (if
any) and what files to protect with this information;
authentication begins. What happens now is
commonly called the challenge/response cycle. The
Web server sends an authentication request to your
browser, the browser will prompt you for a user
name and password within a dialog box. The user
enters their username/password then clicks on OK

and the information is sent back to the Web server.
The Web server then validates the username and
password against the information held in a password
file. If the user passes the authentication (there is a
username/password match) the page is displayed, if
not then the Web server throws up a 401 error page
in the browser, see Figure 2.

Setting up your password file
To enable access to certain users, you first have to
create a password file. We will call our password file,
“.ht_users”, though you can chose your own
meaningful name if you wish.
Now this is not the password
file that gets read when you
login to your Linux machine,
this is a totally different file.

To create this file we use the
htpasswd utility, which enables
you to add users and their
passwords to an encrypted flat
password file. As this file will
hold users’ names and
passwords it is best to stick this file (at least) off the
main Web root directory. For goodness sake, DO NOT
put it in your HTML, CGI-BIN or ICONS directory.
Create a new directory, called “private” say, off the
www directory. (All Apache installs now stick your
HTML (or HTDOCS), CGI-BIN and ICONS directory
within this www directory layout structure by
default.)

Next, lets create a couple of users, say “davetan”
and “paulinetan”.:

$ mkdir private
$ pwd
/var/www/private
$ htpasswd -c /var/www/private/.ht_users
davetan
New password:
Re-type new password:
Adding password for user davetan
$ htpasswd /var/www/private/.ht_users
paulinetan
New password:
Re-type new password:
Adding password for user paulinetan

Some Web pages

restrict access to

authorised members.

If you’ve ever

wondered how this is

done then wonder no

more, David Tansley

shows us how

Membership lists

PROTECT YOUR
WEB PAGES

Figure 1: Requesting a non-existent
document. A 404 error page

Figure 2: Authentication
Failed. A 401 error page

KNOW HOW

18 LINUX MAGAZINE Issue 18 • 2002

You can
use

different
realms to
protect

different
parts of

your Web
page

directory

Notice that when adding user davetan
we have used the -c after htpasswd.
The -c option tells htpasswd that this
is a new file and thus a new file
should be created. We give the full
pathname to the location of the
passwd file(.ht_users). In this case we
are sticking the file in
/var/www/private – you may want to
use a different directory structure.
After a space, the username we are

adding is given. Finally htpasswd prompts for
password confirmations for that user. Adding user
paulinetan, there is no need to specify the -c option
as we do not want to create a new file, only append
to it. If you use the -c, guess what, the file contents
previously held will be wiped.

Here’s how the file we just created looks:

$ more .ht_users
davetan:ETEkRxqtoentY
paulinetan:C.ePHk1ASFlIs

Notice the user names and password are colon
separated and the passwords are encrypted.

Informing the Apache Web server
By default, Apache comes pretty much secure. Locate
the httpd.conf file and do a bit of editing. To find out
where your httpd.conf resides use the find utility to
do all the work for you:

$ find / -name “httpd.conf” -print
/etc/httpd/conf/httpd.conf

Next using vi, vim or some other text editor, edit
http.conf and locate the directory directive:
<Directory>. Make sure you have the correct
AllowOveride entry within this directive, it will
probably have:

AllowOverride None

Change this to “AllowOverride All”, so you have an
entry like so:

<Directory />
Options None
AllowOverride All
</Directory>

If you have made changes to your configuration file,
you must restart the Apache Web server. On a Red
Hat box with Apache put in place at installation,
you can use the rc script to stop/start the Apache
Web server:

$ /etc/rc.d/init.d/httpd restart

Setting up the .htaccess file
Now for the meaty part. Change into the directory
where the HTML files you wish to protect are located
and create a .htaccess file. For example, to protect all
pages that start with the word “private” at the
beginning of the file, the following pattern match
will do it for us:

private*.*

So the above pattern would match all of these files:
private_main.html, privatepage1.html,
private_page2.html and private.php.

Create a file called .htaccess with the following
contents:

AuthUserFile /var/www/private/.ht_users
AuthNAME “Hey! Restricted Directory”
AuthTYPE “Basic”

<Files private*.*>
require valid-user
</Files>

In the first line, AuthUserFile instructs Apache where
the file we created to hold the usernames and
password is located. In the second line, AuthName is
the Realm Name – you can use different realms to
protect different parts of your Web page directory
structure. For the basics, just use it as a header line
that will be displayed on the dialog box when a
browser tries to access a protected page. You must
enclose this with double quotes if you have more
than one word, as above. In the third line, AuthTYPE
is basic; this means we are only using Basic
Authentication, as mentioned at the beginning of the
article.

The Files directive specifies that we are protecting
the files “private*.*”, which will protect all files that
match this pattern. The require valid-user, means the
HTML page(s) matched will not be loaded unless the
user first gets successfully authenticated.

Now load up the browser and point to a file that is
protected and you will get a challenge sent from the
server to your Web browser, similar to Figure 3. If you
hit cancel your browser will throw up a 401 error
page, as in Figure 2. Assuming you enter a correct
username/password, the protected page you
requested will be displayed.

Other examples
To limit access to a page to a single user:

<Files top_secret.html>
require user davetan
</Files>

The above only allows the user davetan to access the

Figure 3: A
challenge/response
dialogue box.

KNOW HOW

19LINUX MAGAZINEIssue 18 • 2002

wrong. Listing 1,
shows my very sparse,
but more friendly
HTML code for a 404
error page.

Please note that you
do not have to create
usernames/passwords
if you only wish to
personalise your error
pages, simply create a
.htaccess file and insert
the entries for the
error pages you are
personalising, as shown above.

Conclusion
I have demonstrated how to carry out basic
authentication on a Web server protecting individual
or many Web pages based via basic pattern
matching. There are many more directives that you
can specify, however space does not allow me to go
through all of them. When testing your .htaccess
configuration directives it is always a good idea to
open up a new shell window and continuously page
the end of your error log file, so you can pick up any
mis-configurations you may have in the .htaccess file
straight away and fix them. Like so:

$ tail -f error_log

When a user has been validated, they remain
validated, even if they go off to another site then
come back to view the same protected page again so
long as they have not closed down their browser. To
re-set the authentication the calling browser must re-
start their browser. Bear this in mind when testing
your authentication procedures.

Being able to personalise your error pages, makes
your Web site friendlier and more professional to a
user visiting your site. When these types of hiccups
do happen, it shows you care about your Web site.

Listing 1: not_found404.html
<HTML>
I am sorry, but the file you requested could not be found,
 it may
have been
moved, deleted or simply just does not exist.

Back to Home

If you have a query or something we should know about email the
administrator
at webadmin@localhost

<HR>
<CENTER></CENTER>
<HR>
</HTML>

Info
Apache homepage:
www.apache.com

Figure 4:
Personalised 404

error page

page top_secret.html
You may be thinking, what if somebody points

their browser to an HTML directory and specifically
tries to load a .htaccess file. No problem, just deny
viewing from everybody:

<Files .htaccess>
deny from all
</Files>

The above file directive will set the state to deny from
everybody. Your .htaccess file is safe. If some one tries
to access it directly, a 403 forbidden error page will
be thrown up in their browser, saying it does not
have access to this file. Neat, eh?

Personalising error pages
Ever gone to a broken link and had a totally
unfriendly “Not Found” document thrown in your
face? It is possible to make these pages friendlier to
the calling browser, however. There are quite a few
error code pages on a Web server. The most common
ones are:

204 No content
401 Authorisation Required
403 Forbidden
404 Not Found
500 Internal Server Error

Lets see how to create a “404 Not Found” error
page; the principles are the same for other error
pages you wish to personalise. All you need to do is
put an entry in your .htaccess file (that you created
earlier). Like so:

ErrorDocument 404 /icons/not_found404.html

Each ErrorDocument for a different error code must
go on a new line. The format of the entry is:

ErrorDocument <error code> <path to error page>

In the example shown above, I have put my error
document in /icons, which is off the Web root
directory. You are not restricted where you put these
HTML pages; some like to create a separate directory
and stick them in there – it’s up to you. Also notice
the name I have given to the HTML page is a
meaningful one that corresponds to the actual error
code page. In my example I have used
not_fouund404.html, so I know it is concerned with
the 404 error code page

When throwing up personalised error pages it is
considered good practise to always put a link back to
your homepage, or at least to some main Web site
(like http://www.netscape.com). There should also be
a way for the user to complain that some thing is

