
KNOW HOW

49LINUX MAGAZINEIssue 18 • 2001

Welcome to the fifth

and final part of our

series on using the Qt

toolkit for creating

graphical applications.

In this issue Jono

Bacon covers the

remaining features

that Qt has to offer.

For any of the

features that we

don’t have space to

cover refer to the

documentation and

the Qt-interest

mailing list

Although it is perfectly fine to use the QMenuBar, QPopupMenu, QToolBar and
QtoolButton classes, it is often a good idea to also use the QAction class to build
actions.

Actions are basically things a user will do while using the application; e.g.
opening a file, printing a document etc. The QAction class lets us group the user
interface elements for these actions (menus and toolbars) so when we add an
action, we get the necessary user interface elements automatically.

Take a look at the QAction documentation for more details.

Action time

Qt tutorial – Part 5

GETTING STARTED
WITH QT

One of the many benefits of using Qt is that it
comes with a rich array of readymade
widgets, which you can pick and use. Let’s

now take a quick look at some of these widgets and
how we can put them to work.

Office land here we come
One of the main uses that Qt can be utilised for is
building the typical office-style applications, which
utilise many of the typical widgets you see in normal
everyday applications. Here is a breakdown of these
widgets and which classes you can use for them:

Menus

The purpose of a
menubar is to act as a
placeholder for menus
(which are called popup
menus). The menubar is
created using the
QMenuBar class to create
the bar, and then each
item is created using a
QPopupMenu for each
entry. Once these have
been created, we can
then use insertItem() to
add an item to each
menu. You can also set slots to connect to when you
add the item. The following code creates a couple of
menu items on the menubar and then adds some
entries:

1 QMenuBar * menuBar = new QMenuBar(this);
2
3 QPopupMenu * fileMenu = new
QPopupMenu(menuBar);
4 QPopupMenu * itemMenu = new
QPopupMenu(menuBar);
5
6 fileMenu->insertItem(“&New Item”, this,
SLOT(slotNewItem()), CTRL+KEY_N);
7 itemMenu->insertItem(“&Edit...”, this,
SLOT(slotEdittem()), CTRL+KEY_E);
8

9 menuBar->insertItem(“&File”, fileMenu);
10 menuBar->insertItem(“&Item”, itemMenu);

When you have added items to a menu, you should
get something looking similar to Figure 1:

Toolbars

***qt3.jpg

Toolbars are widgets, which can look similar to a
menubar, but contain buttons (called toolbuttons)
instead. The purpose of a toolbar is to present a
button with an icon on, which connects to a
frequently used function or action. Toolbars use the
QToolBar class, and contain toolbuttons built from
the QToolButton class.

Usage of a toolbar and toolbuttons is often
coupled together, using a QmainWindow, which we
will cover later.

Status bar
***qt4.jpg
The status bar widget is usually found at the bottom
of the main window and is intended for showing
concise information and detailing what is currently
going on. In many ways it is intended as a
metaphorical dashboard for an application. The status
bar is implemented using the QStatusBar class, and it
has basically three different modes:

● Temporary – occupies most of the status bar

Figure 1

KNOW HOW

50 LINUX MAGAZINE Issue 18 • 2001

briefly. Used for explaining tool tip texts or menu
entries, for example.

● Normal – occupies part of the status bar and may
be hidden by temporary messages. Used for
displaying the page and line number in a word
processor, for example.

● Permanent – is never hidden. Used for important
mode indications. Some applications put a Caps
Lock indicator in the status bar.

The statusbar is often used with the QMainWindow
class, which we will cover later.

The magical main window
Qt has special support for another type of window
(we have already covered Qdialog-based windows
and we have discussed widgets). The intention of this
type of window is that it forms the main body of
your application and contains the menubar, menus,
toolbar, toolbuttons, status bar, documents etc. that
your application provides. The class used to create
this special type of window is QMainWindow.

A QMainWindow is basically a normal window, but
it has a number of convenience methods, which can
be used to make life a little easier. The usual usage
for a QMainWindow is to inherit from it, and then
use these convenience methods where needed.

The usual behaviour for the window building
process is to create some methods, which build the
various parts of the window and execute these
methods in the constructor. I usually create the
following methods to build the various parts:

initActions() – Creates the menus (menubar and
menu items)
initToolbar() – Creates the toolbar and
toolbuttons
initView() – Creates the main view of the
application (usually the document for example)
initStatusbar() – Creates the status bar

Many coders often include some other methods for
building other parts of the application:

initConfig() – Load the config file for the app
initDefault() – Setup any default settings
initDoc() – Create any document data related
objects and constants

Once these things have been executed the window is
pretty much built.

The QMainWindow has a number of different
convenience methods, but the most common ones
you are likely to use are for setting up the menu,
toolbar and status bar and for setting the main
widget for the application. Facilities available in
QMainWindow include addToolbar() for adding
toolbar items, menuBar() returns the menu bar and
creates a new one if needed. menuBar() and
statusBar() are also available as convenience methods
for building those widgets and they manage the
relevant space needed by those widgets.

One of the main uses of a QMainWindow is for
managing the screen space of the main area in the
window (the place where the document traditionally
is). This space is called the main or central widget,
and you can set any widget as the central widget
using setCentralWidget(). QmainWindow won’t
actually affect the widget itself – it will just manage
the geometry of it.

Non graphical aspects of Qt
Although most people who have seen Qt will think of
it as a GUI toolkit, the functionality of Qt certainly
doesn’t end with on-screen widgets. Qt has
substantial support and classes for non-graphical
processing.

The first thing we can look at is the data structures
that Qt has. The first and possibly the simplest is
QString. The QString class offers a number of
methods and facilities for common string usage, and
due to the fact that QString uses implicit sharing, it is
fast. Another useful class is the QStack class. There is
support for pushing and popping data onto the stack
with push() and pop() and much more. Another

Here is a quick run down of the classes you would use for typical functions
within your applications:

Create tab pages QTab
Creating radio buttons QRadioButton
Creating combo boxes QComboBox
Creating a step by step wizard QWizard
Let the user open a file QFileDialog
Manipulate files QFile
Manipulate regular expressions QRegExp
Drawing graphics QCanvas, QPainter, QPixmap
Manipulating mouse actions QMouseEvent, QEvent
Editing multiple lines of text QMultiLineEdit
Connecting multiple objects to slots

and checking which was the caller QSignalMapper
Dealing with data structures QArray, QList, QVector, QStack,

QQueue, QDom[...]
Storing coordinate points

in a data structure QPointArray
Creating tooltips QToolTip
Playing sounds QSound
Creating widget themes and styles QStyle
Printing QPrinter
Handling the mouse wheel event QWheelEvent
Dealing with HTML code QDom[...] extension, QXml[...] extension
Networking QSocket, QNetworkProtocol,

QNetworkOperation, QFtp

Class Mania!

KNOW HOW

51LINUX MAGAZINEIssue 18 • 2001

useful class is the QList class. QList gives a lot of
support for typical lists, and is often used in
conjunction with a QListView or QTable widget. QList
is a full template class with support for double linked
lists. QList also uses the internal QLNode class to hold
pointers to the usual next and previous items. Using
this class can make handling lists a breeze so I
suggest a good read of the documentation for QList.
Other classes such as QVector, QQueue and QArray
are worth looking into regarding data structures.

KDE support
Qt is a fantastic widget set, and if you use KDE you’ll
be pleased to know that KDE is written using Qt. The
KDE project has developed a number of extension
classes and technologies, which extend Qt
applications for desktop integration, inter-application
communication and more. These extensions are
called the KDE Libraries, and if you are planning on
writing an application for use on a desktop UNIX-
based system, looking into providing KDE support is a
wise idea.

KDE supplies the following services built from Qt to
extend Qt:

● Integration with the desktop – integrating files,
directories, icons and more.

● KParts component model – KParts enables support
for applications that can be embedded,
applications within applications

● DCOP – Powerful interprocess communication and
scripting support Addressbook, kded, shared
resources – KDE has shared address books,
daemons and other resources

● aRts – KDE natively uses the aRts digital synthesis
server for powerful music capabilities

All of these are natively supported in Qt as most of
them were coded using Qt. This desktop support
extends your application if you wish.

Wrapping things up
Well it has been an interesting journey into the world
of Qt development, and I hope I have helped you get
started with Qt development. Qt is a truly powerful
API and it has a learning curve, but once you are
started, progress can be made smoothly. I am always
eager to hear how you get on, so drop me an email,
via the magazine, and let me know. Good luck!

