
PROGRAMMING

52 LINUX MAGAZINE

Useful Tcl and Tcllib functions

HIDDEN
TREASURES
When writing applications you often

encounter problems that countless
developers have had before you. Besides

the normal system functions, Tcl provides solutions
for many problems, so that programmers don’t need
to go to the trouble of sorting them out for
themselves. These solutions come in the form of
packages, which are easily loaded into the interpreter
and are usually part of a normal system installation.
An earlier instalment of Tcl/Tk has already introduced
the msgcat internationalisation package, this time we
are going to look at three more packages.

Split
Don’t you just love the thousands of options on the
command line that control an application? Before the
program can make use of these parameters there is
an arduous task to be performed. The string entered
by the user must be divided up and examined for

The Tcl/Tk

distribution contains

a lot of useful

functions that many

programmers don’t

know about. These

can help to solve

many common

problems, such as

parsing the command

line, very quickly.

Carsten Zerbst takes

a closer look

valid and invalid options. You could, of course, write
this yourself, but why bother when a solution already
exists in the shape of the opt package?

This package contains the command tcl::OptProc,
which is used instead of the normal proc command.
The command has three parameters: tcl::OptProc
name, parameter description and body. The name of
the procedure to be created is followed by the
description of its parameters. This description is
actually a list of the valid passing parameters. Each
individual parameter is in turn described in another
list that contains the following elements:

● Parameter name, with a hyphen for optional
arguments.

● Type. OptProc recognises -boolean, -int, -real, -list
and -choice, the latter including the choices
available.

● Default value. Used if this parameter has not been
set when the procedure was called.

● Description.

It is not necessary for all four elements to be defined.
For example, OptProc can automatically determine
the type from the default value. Listing 1 shows some
different examples of definitions as well as nested
lists in the second parameter of tcl::OptProc. This is
followed by the actual function.

When calling a command defined in this way the
parameters are passed as individual strings, which the
procedure automatically parses according to the
definition. This is also the reason for the eval
construction in line 23: $argv contains the command
line parameters in form of a list, but main is
expecting them as individual options.

The parameters to be passed are available as
variables within the procedure. Another interesting
feature of the example is the foreach loop: at each
iteration of the loop the variable v receives the name
of a variable containing the value of the respective
option. $v in line 19 therefore only outputs the name
of a variable, [set $v] is required to show its content.

If the parser encounters an error, either because
the type of a variable is incorrect or because a

Issue 18 • 2002

Listing 1: The opt package
01 #!/bin/sh
02 # Example for the opt package
03 # \
04 exec tclsh $0 $@
05
06 package require opt
07
08 tcl::OptProc main {
09 {require -string “file name”}
10 {-flag}
11 {-int 2 }
12 {-real 1.0 “flag, default 1.0”}
13 {-bool -boolean false “boolflag, default false”}
14 {-choice -choice {1 2 3} “selection, 1, 2 or 3”}
15 {-list -list {} “list, default {}”}
16 {?more? -string “” “unparsed remainder”}
17 } {
18 foreach v [list required flag int real bool choice list more] {
19 puts stdout [format “%14s : %s” $v [set $v]]
20 }
21 }
22
23 if {[catch {eval main $argv} err]} {
24 puts stderr $err
25 exit
26 }

PROGRAMMING

53LINUX MAGAZINEIssue 18 • 2002

required parameter is missing, it returns an error. This
can return the section of the program called to the
user (catch in line 23 and puts in line 24). Another
popular option is -help, which outputs the definition
of the arguments with their description. In Figure 1
you can see the script from Listing 1 in action.

The OptProc package allows you to provide Tcl
programs with a useful command line interface very
quickly. Even individual procedures can benefit from
this flexibility.

Let’s have it
Of course Tcl has much more to offer, including an
implementation of HTTP, the Hyper Text Transfer
Protocol. The HTTP package is part of a standard Tcl
installation and allows access to Web pages. At the
heart of the package is the command http::geturl, it
can load files with all the trimmings, fill in forms or
simply retrieve information about a page.

The return value of the command is a token. This
token is the name of an array, which in turn contains
information about the page and, depending on the
request, possibly even the file itself. After each use of
http::geturl it is therefore necessary to delete this
array with the command http::cleanup, otherwise this
is a great way for the interpreter to become bloated
with more and more data.

First of all it makes sense to have a look at the
environment of a Web page. The flag -validate
restricts http::geturl to only loading information like
size and MIME type of the file or Web server type
instead of the entire file. This is what happens in the
first few lines of Listing 2, while line 14 outputs this
meta-information. However, not all Web servers
reveal their meta-data without pages being actually
requested. The CUPS server, for instance, is very
unforthcoming in this respect and only supplies meta-
data with a file.

Latest news
No matter how insecure domain management by
email at InterNIC may be, even without security
gaps things can go badly amiss with name server
entries. In this particular case the cause is
something that is often red, always small and has
two cute little round eyes. Others see it as an
expensive toy with which its owners are trying to
recapture their lost youth. We are, of course,
talking about the new Mini.

What exactly is the connection between BMW
and the Internet? At first glance nothing, apart
from the fact that BMW also uses Tcl. Since 1996
an enormous font of Tcl knowledge has been
available at the “Tcl’ers Wiki”. Its URL
http://www.mini.net recently started to rather
unexpectedly link to BMW. The entry at
registers.com had been transferred to BMW
without anyone bothering to consult the domain’s
owner, Jean-Claude Wippler. The company had
bought a number of other addresses featuring the
Mini, but not mini.net. Wiki users were quick to
notice the error, but it took some time before the
Wiki was back in business. Accidents like this just
go to show once again how easy it is to cause
major disruptions on the Internet.

Combat: CORBA scripting with Tcl
CORBA is the solid foundation of many an
application. Frank Pilhofer’s Combat has probably
been the best Tcl binding available for this
middleware for quite some time. It allows you to
write CORBA clients as well as servers. Until now
it required MICO as its basic ORB – but with

Combat 0.7 there now exists a pure Tcl
implementation so that complicated libraries are
no longer required.

Patchlevel Tcl 8.3.4
The latest patchlevel for Tcl 8.3 is now available in
Tcl 8.3.4. The improvements primarily concern 64-
bit platforms and are therefore (not yet) of much
general interest. While Tcl can generally do more
with each new release, naturally growing ever
bigger at the same time, CISCO is currently
financing a project by ActiveState to develop a
modular Tcl. The aim is to only load those modules
into the interpreter at startup that are absolutely
necessary. What can be gained by this is
demonstrated by NASA’s Marsrover or currently by
the game Wiggles in which each figure runs on a
pared-down interpreter which takes up all of 17Kb.

New Tcl database
A close symbiosis has existed between databases
and Tcl for quite a while. There is hardly an SQL
database that doesn’t come with a Tcl extension, if
Tcl isn’t used for system tools or code tests anyway,
as in the case of Adabas or Oracle. Sometimes you
need just a little bit more than a simple text file
without really requiring a full-blown database. For
these occasions Richard Hipp offers SQLite, a small
database engine that runs directly in the application
and understands a sufficient subset of SQL. This
means that small applications for interactive
customer catalogues or CD collections can be
implemented without elaborate server processes.

Even
without
security

gaps things
can go

badly amiss
with name

server
entries

PROGRAMMING

54 LINUX MAGAZINE Issue 18 • 2002

Once you have the information about a page you
might want the whole thing. The next lines of Listing
2 contain a simple example. As described above,
geturl normally returns a token that describes an
array in which the file itself eventually ends up. In
Listing 2 the file is instead written directly into an
open file due to the option -channel.

The command http::geturl blocks the interpreter
until it is finished or an error occurs. So that the user
will get some sort of feedback during loading, geturl
invokes the callback procedure progress every 2048
bytes. progress simply outputs the percentage of the
file that has already been loaded.

As soon as the file has been transferred completely
the information held in the token becomes available.
Various functions from the HTTP package access
these data, http::code, for example, requests the
transfer status code. The output of the script in
Listing 2 can be seen in Figure 2.

The Web has much more to offer than simple data
transfer from server to client. The form tag allows
you to design simple user interfaces in HTML with
input fields, radio buttons and the like. A popular
service requiring user input is AltaVista’s Babelfish,
which can translate single words, sentences or entire
HTML pages between various Western and Eastern
languages.

The values of the buttons and entry fields must be
suitably packaged for transfer to the server. This is
done using the command http::formatQuery, which
expects a list of variable names and values as input.
The variable names can be found in the HTML code
as attributes of the tags input, select or textarea. For
radio buttons and the select tag the code also
contains the valid parameters. The request’s target
URL is contained in the form tag as the attribute
action; the formatted request will need to be
appended to this.

A simple example can be seen in Listing 3 where a
single word is translated using Babelfish. The opt
package is used to parse the command line. Line 14
assembles the required URL for translation of the
word in the desired language combination. Unlike

Info
Tcl’ers Wiki http://www.mini.net
Getleft http://personal1.iddeo.

es/andresgarci/getleft/english/
GNOCL http://www.dr-baum.net/gnocl
CORBA http://www.omg.org
COMBAT http://www.fpx.de/Combat
Wiggles http://www.wiggles.de
SQLite http://www.hwaci.com/sw/sqlite/
Wrong registration http://www.mini.net/tcl/

2355.html

Listing 2: Files from the WWW
01 #!/bin/sh
02 # Example for the http package
03 # \
04 exec tclsh $0 $@
05
06 package require http
07
08 set url http://tcl.activestate.com
09 #set url http://127.0.0.1:631
10
11 # meta-information
12 set token [http::geturl $url -validate 1]
13 foreach {name value} [set $token\(meta)] {
14 puts stderr [format “%-20s = %-20s” $name $value]
15 }
16
17 # file
18 set fd [open as.html w]
19 puts stderr “get $url”
20
21 proc progress {handle max size } {
22 puts -nonewline stderr [format “ %.0f%% “ [expr 100.0*$size/$max]]
23 }
24
25 set token [http::geturl $url \
26 -channel $fd \
27 -blocksize 2048 \
28 -progress progress
29]
30
31 puts stderr “finished”
32 puts stderr [http::code $token]
33 http::cleanup $token
34 close $fd
35 exit

Figure 1: Entry using the optpackage

PROGRAMMING

55LINUX MAGAZINEIssue 18 • 2002

most of our other examples this one also contains
error handling, otherwise it wouldn’t be much use.
Babelfish is often busy, so our program cuts its losses
after 15 seconds. A check in line 19 whether the
transfer was successful is followed by the code for
processing the received data.

Worldwide
Internally Tcl works with Unicode and is therefore
able to handle Chinese or Arabic characters. For
strings that either originate externally or are intended
for external use, Tcl assumes Western European ISO-
8859-1-encoding. However, AltaVista pages are
created in UTF-8 so the text needs to be converted to
the internal Unicode format before processing. This is
done using the encoding command in line 23.

Next, we need to extract the translated word from
the page. The most elegant way of doing this is with
the help of the W3C’s DOM model, which we are
going to have a closer look at in a future instalment.
Until then we are going to extract the old-fashioned
way: the HTML code including the result is split into
individual lines. The translated word is located
between the start and end tag of textarea, the script
simply combines any relevant lines and discards any
unwanted tags with regsub. Not pretty, but effective.

The author
Carsten Zerbst works for Atlantec on a specialised
PDM-System for the ship-building industry. Apart
from that he devotes his time to the general
application of Tcl/Tk.

Figure 2: Trawling through the WWW with Tcl: the
script first shows information about
http://tcl.activestate.com, then it loads the page and
gives a running update of its progress Listing 3:

Client for interactive HTML pages
01 #!/bin/sh
02 #
03 # Translation using Altavista’s Babelfish \
04 exec tclsh $0 $@
05
06 package require opt
07 package require http
08
09 tcl::OptProc main {
10 {text -string “text”}
11 {-langs -choice {en_de en_fr en_it fr_en fr_de de_en de_fr it_en}
“languages, default en_de”}
12 } {
13 set url http://world.altavista.com/tr
14 append url “?[http::formatQuery tt urltext urltext “$text” lp
$langs]”
15
16 if {[catch {http::geturl $url -timeout 30000} token]} {
17 error “Problem with network: $token”
18 }
19 if {[http::ncode $token] != 200} {
20 error “Problem with server, $token”
21 }
22 # “Brutal” data extraction method
23 set htmllist [split [encoding convertfrom UTF-8 [http::data
$token]] \n]
24 http::cleanup $token
25 set index0 [lsearch -regexp $htmllist “<textarea”]
26 set index1 [lsearch $htmllist “</textarea>”]
27 if {($index0 < 0) ||($index1< 0)} {
28 error “Problems with parsing”
29 }
30 set result [join [lrange $htmllist $index0 [expr $index1 -1]]]
31 regsub {<textarea[^>*]>} $result “” result
32 puts stdout $result
33 exit
34 }
35
36 if {[catch {eval main $argv} err]} {
37 puts stderr $err
38 exit
39 }

