
File handling
Most software will at some time need to read from
(or perhaps write to) a file. Text editors obviously
need to, device drivers less so. The files can be
generalised into three categories: user data files,
program configuration files, and program data files.
From the program’s perspective, however, they are
handled in exactly the same way.

The x files
The programming metaphor for file handling is the
same as it is for the user, that is, you open a file,
work with it (read, write or both) and then close it

when you’ve finished. There is an example of this
in Listing 1.

Let’s deal with the necessities
first: line 1 includes the header file

stdio.h. We should be used to this by now

C: Part 6

LANGUAGE
OF THE ‘C’

PROGRAMMING

60 LINUX MAGAZINE Issue 19 • 2002

In part 6 of Steve

Goodwins’ ‘C’

tutorial we

continue our look

at file handling and

keyboard input

as it allows us to use the printf function. However, it
also allows access to the file handling functions. Line
5 declares a pointer (fp, by the way, stands for file
pointer) to a FILE structure, defined inside stdio.h.
The fopen function gives us a valid FILE to point to,
and requires two (guessable!) string arguments. The
first is the file name (with either a relative or absolute
path), whilst the second is the “mode”, indicating
how we wish to open the file. It is permissible to use
the modes detailed in Table 1.

If file * is non-NULL, then lines 11-13 are executed.
The first of these, fgets (file get string), will read plain
text from the file (fp) into the buffer szText, up to a
maximum of 79 characters. The reason for this limit is
that it is one less than the size of the string, giving it
space to add the NULL terminator. It doesn’t have to
read 79 characters however, as it will stop when it
finds a new line character (or it reaches the end of
the file). This is the same function we saw briefly as a
replacement to the (rather awful) gets function.

Finally, line 13 closes the file. Because fp is a local
variable, and its value alone is passed into fclose, it
will still hold a file pointer when fclose returns. It will
be an invalid file pointer, but a pointer nevertheless.
Therefore, I like to manually reset the pointer after
I’ve closed a file to remind me it is no longer in use
(line 14).

Search and destroy
For our conversion routine to gain a wider audience,
we’re going to let it convert between any pair of
units: miles to kilometres, pints to litres and, yes,
Fahrenheit to Celsius! Let’s create a file (called
“convert.conf”) with the following entries:

m km 1.6093 0

pt l 0.568 0

f c 1.8 32

Each line has four tab-separated fields: the “from”
unit, the “to” unit and two numbers. We multiply by

Listing 1
1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 FILE *fp;

6 char szText[80];

7

8 fp = fopen(“listing1.c”, “r”);

9 if (fp)

10 {

11 fgets(szText, sizeof(szText), fp); U

/* grab line 1 */

12 printf(szText);

13 fclose(fp);

14 fp = NULL;

15 }

16

17 return 0;

18 }

PROGRAMMING

61LINUX MAGAZINEIssue 19 • 2002

Table 2

the first, and then add the second to convert from
“from” to “to”!

If we were parsing this configuration file it would
be possible to read each line into a string and scan it
manually, one character at a time, for each field. It
wouldn’t be very difficult, given the code we’ve
already learnt, but as good programmers, we’re lazy!
We’ve got a library function that does most of this
for us. It’s called fscanf.

fscanf(fp, “%s %s %f %f”, szFromUnits, U

szToUnits, &fMultiplier, &fAddition);

fscanf is a direct equivalent of the scanf we’ve
already seen. It works in exactly the same way, but
takes an extra parameter of the file pointer. It also
returns an EOF if the end of file has been reached, or
a count of successfully read parameters, like scanf.

End of the century
We can now read files. Great! But we’ve seen
nothing to tell us if there is any more data in the file
to be read. That’s because I’ve not shown you any
way of knowing when (or how) the end of file is
flagged. The fact is, it isn’t! Not really. What happens
in C is that you try to read from the file (with fscanf
or fgets, say) and then it tells you there’s no more
data left. Not before. But after! This end of file (EOF)
condition is indicated by the return value of
whichever function you use to read the data, as
shown in Table 2.

Finally, there is also a feof function, which returns
TRUE if the EOF has been reached. Naturally you
should check the return value of any fgets before you
use any of the data it gives you. However, if you are
reading complex files using two or three of the above
functions, feof can make a convenient loop
terminator. For example:

while(!feof(fp))

{

if (fgets(szText, sizeof(szText), U

fp)) { /* do something */ }

if (fscanf(fp, “%f”, &fVar) U

!= EOF) { /* do something */ }

if ((ch = getc(fp)) U

!= EOF) { /* do something */ }

}

If we were to compile under a system that doesn’t

Function What it returns on EOF Comments

fgets NULL Will normally return a pointer to string
to the read data (which you also
passed in)

fscanf EOF EOF is a numeric constant, defined to
be -1 in stdio.h

getc EOF Like getchar the return type is an int,
allowing it to return 0 to 255, and EOF

Table 1
Mode Method Comments

r Reading If the file doesn’t exist fopen returns a NULL pointer. This could also happen if
you do not have read permissions, or it has been opened exclusively by
another program. Reading starts at the beginning of the file.

w Writing Creates a new file and allows write access to it. Will return NULL if the file
cannot be created (perhaps it already exists, and you don’t have write
permissions). Writing starts at the beginning of the file.

a Appending Opens an existing file (or creates one, if it doesn’t exist) and allows write
access. Returns NULL if the file doesn’t exist, and a new file can’t be created
in its place. This usually happens when you don’t have write permissions in
the directory. Writing starts at the ‘end’ of the file (as you might already have
guessed!). To reset this ‘file marker’ to the beginning use ‘fseek’, explained
later.

r+ Read and write When mode features the ‘+’ symbol it works as above, but additionally
supports read and write. So ‘r+’ will open the file for reading (failing if it
doesn’t exist), but will also support writing data back into the file.

w+ Read and write Similar to ‘r+’, but does not fail if the file doesn’t exist.

a+ Append and read Similar to ‘w+’.

Note: Some software will use the letter b to open a binary file (as opposed to ASCII). This is not necessary
since file type is determined by how you access the file; with fgets (implying an ASCII file), or fread (binary)
for example.

use the same end of line character as Linux (or even
one that used two end of line characters) we
wouldn’t need to change our code! That’s because
the fgets function is inside an OS-specific library, the
writers of that library would handle the appropriate
end of line character(s) for us.

Paperback writer
Writing data into a file is no more difficult than
writing it out to the screen. Once we’ve opened the
file with fopen we can use any combination of the
three primary output functions shown in Table 3.
These can be used as shown in Listing 2.

The specials
You will notice that there are marked similarities
between the console I/O and file I/O functions. This is
intentional, as it allows C to follow the Unix/Linux
philosophy that everything should be a file – our
input stream (usually from the keyboard) is actually a
‘file *’, meaning we could read formatted keyboard
input with:

fscanf(stdin, “%s %f”, szFromUnits, U

&fConversionNumber);

instead of

scanf(“%s %f”, szFromUnits, U

&fConversionNumber);

because we have three standard file pointers that
always exist: stdin, stdout and stderr. These are all
variables (of a file * type), but should not be modified
from within the program like most variables. An old
trick was to write:

stdout = fopen(“output”, “w”);

which caused every printf and puts to automatically
find its way into the output file. This is bad!!! If you
want an easy way to redirect output to a file (from
inside the C program) create a ‘file *’ and output all
text through it. The ‘file *’ variable can then be made
to point to either stdout, or a file created with fopen.
However, it is generally better to leave file redirection
of this sort to bash (or some other shell).

Binary files
Most files consist of chunks. These are groups of
entities that belong together. In a graphic format,
one chunk might be the header (containing image
width and height), another might contain the palette
information, whilst another might be the image data.
In ASCII files, these chunks might be distinguished by
a line break or a tab (like “the file what I wrote”
above!). With binary formats, the unit of persuasion
is the byte. In these cases, the end of line character
(“\n”) is treated like any other. For it to be handled as

PROGRAMMING

62 LINUX MAGAZINE

Other functions
The functions covered here are “standard”
functions. Linux also includes low level file
access with a number of other functions –
source code voyeurs may have noticed calls to
‘open’, ‘creat’ (sic) and ‘unlink’. It is perfectly
valid to use them, provided your work will not
be ported outside the Linux arena. However,
their usage will not be explained here.

Table 3
Function What it does

fprintf Works exactly the same as printf, but takes an additional (first)
parameter indicating the file pointer.

fputs Works like puts, but takes an additional (second) parameter,
indicating the file pointer. As a peculiarity, fputs does not add an
end of line character to the string like puts.

fputc A mirror of getc, takes two parameters: the character to output
(also as an integer, not a character), followed by the file pointer.
Some code will use putc in place of fputc. Both take the same
parameters, in the same order, and are identical in operation.
However, fputc is a function, and putc is a macro. Which one you
use is a matter of style.

Listing 2
1 #include <stdio.h>1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 FILE *fp;

6 int i;

7

8 fp = fopen(“dataform”, “w”);

9 if (fp)

10 {

11 fputs(“Data Collection Report\n”, U

fp);

12 for(i=0;i<32;i++)

13 fputc(‘-’, fp);

14 fputc(‘\n’, fp);

15 fputs(“Time : Temp in Celsius\n”, U

fp);

16 for(i=0;i<24;i++)

17 fprintf(fp, “%.2d-00 : ____\n”, U

i);

18 fclose(fp);

19 fp = NULL;

20 }

21

22 return 0;

23 }

such, we need functions that read (and write) data
without stopping at the first new line it finds, as in
Table 4.

After each read or write operation, the file marker
is incremented beyond the data we just read (or
wrote). This marker is basically an index indicating
how far (in bytes) into the file we are. It is very similar
to an array index when we are dealing with memory.
We can discover this index with:

position = ftell(fp);

position is the number of bytes (from the start of the
file) we are currently at; where zero indicates the first
byte, and minus one is an error code (EOF). Its result
can be stored in a ‘long’ variable and used to rewind
the file to that position later in the code:

fseek(fp, position, SEEK_SEL);

The last parameter is the interesting one. It can be
one of three possible values, as defined in stdio.h.
When writing code, you should always use the name
to ease readability. However, some (very cheeky)
programmers don’t, and use the values in column 2
of Table 5.

The fseek function returns 0 if everything went OK,

or EOF if you exceeded the bounds of the file. (An
improvement on arrays, notice, which do not give an
error if you try referencing data that is out of
bounds).

That, unbelievably, is the entire sum of the
standard file I/O library (but see the Other
functions boxout). There are no standard
functions to list every file in a directory,
report the file attributes, copy a file or
calculate the size of one. This is for
portability, since not all systems work
with the same system of attributes or
directory structure (as much as we might
want it to be, Linux is not the centre of
the computing universe!). However, with a
little thought we can use the given functions
to create our own ‘file size’ routine, as shown in
Listing 3.

A file copy is also a simple routine using fread and
fwrite. For other file handling functions, see a cheat
method in the System boxout.

Bright lights, big city
We have covered quite an array of features so far in
this series! We can read a conversion table from a
file, parse it into variables, work with strings (part 3),

PROGRAMMING

63LINUX MAGAZINEIssue 19 • 2002

Table 4
Example Explanation

int iData[16], iNum; fread reads a number of data elements into the
iNum = fread(&iData[0], memory specified (parameter 1). The size of each
sizeof(int), 16, fp); data element is held in parameter 2, while

parameter 3 tells C how many there are to load.
The return value indicates how many were actually
loaded. Normally this is identical to the number we
requested, unless an end of file was reached, in
which case it will (naturally) be lower. (To work with
individual bytes, the size of the data element is set
to ‘1’)

fwrite(&iData[0], This writes out the data, as is: no end of line
sizeof(int), 1, fp); character(s) are added (since this is a binary

operation). Here, we decided to write out just one
integer. The parameter order is identical to fread.

Table 5
Name Value Use

SEEK_SET 0 Move to “position” bytes from the start of the file.
Negative values are allowed, but make no sense.

SEEK_CUR 1 Move “position” bytes from the current position. Positive
values move the marker forward, negative ones move it
back.

SEEK_END 2 Move to “position” bytes from the end of the file. Positive
values are allowed, but make no sense. A position of “-1”
sets the file marker to the last byte of the file.

Listing 3
1 #include <stdio.h>

2

3 long MyGetFileSize(char *pFilename)

4 {

5 FILE *fp = fopen(pFilename, “r”);

6 long iSize; /* Not an int since long could U

traditionally cope with much larger numbers */

7

8 if (!fp)

9 return -1; /* Error! File doesn’t U

exist */

10

11 fseek(fp, 0, SEEK_END); /* First byte U

after the file ends */

12 iSize = ftell(fp);

13 fclose(fp);

14 fp = NULL;

15

16 return iSize;

17 }

18

19 int main(int argc, char *argv[])

20 {

21 printf(“This file is %ld bytes long!\n”,U

MyGetFileSize(“listing3.c”));

22 return 0;

23 }

PROGRAMMING

64 LINUX MAGAZINE Issue 19 • 2002

look at arguments passed in on the command line
(part 1) and convert data between Celsius and
Fahrenheit (parts 2, 3, 4, 5 and 6!). It wouldn’t be
difficult to put them altogether to create a general-
purpose conversion utility. And that, coincidentally, is
what appears in Listing 4!
We can test this with:

$convunit 54 f

54.00 f => 129.20 c

$convunit 10 m

10.00 m => 16.09 km

Note: the atof function in line 22 converts a string
into a double. We then have to “type cast” (i.e.
convert) it into a float, since that’s what we are using.
Casting will be explained more fully in a later issue.

The ball’s now in your court as far as adding a
touch of polish goes. For example:

● An error (to stderr, remember) if there are not
enough arguments.

● An error if the file doesn’t exist.
● Work out the inverse – i.e. if ‘f=>c’ is given in the

conf file, work out “c=>f”.
● Read the conversion information into an array of

structures.
● Use a separate function to produce the conversion.
● Convert a range of values if three arguments are

passed in.

The difference in a casual programmer’s C program
(like above), and a professional industrial-strength
one is how it handles the errors. Making
enhancements to the above program is therefore
highly recommended.

The author
Steven Goodwin celebrates (really!) 10 years of C
programming. Over that time he’s written compilers,
emulators, quantum superpositions, and four
published computer games.

Listing 4
1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char *argv[])

5 {

6 FILE *fp;

7 char szFromUnits[32], szToUnits[32];

8 float fMultiplier, fAddition;

9 float fValue;

10

11 if (argc < 3) /* We need two U

arguments: number and then units */

12 return EXIT_FAILURE;

13

14 if (fp = fopen(“convert.conf”, “r”))/* U

Checks the file exists */

15 {

16 while(!feof(fp))

17 {

18 if (fscanf(fp, “%s %s %f %f”, U

szFromUnits, szToUnits, &fMultiplier, U

&fAddition) != EOF)

19 {

20 if (strcmp(argv[2], U

szFromUnits) == 0)

21 {

22 fValue = U

(float)atof(argv[1]);

23 printf(“%.2f %s => %.2f U

%s\n”, fValue, szFromUnits, fValue * U

fMultiplier + fAddition, szToUnits);

24 }

25 }

26 }

27 fclose(fp);

28 }

29 return EXIT_SUCCESS;

30 }

System
One of C’s biggest strengths, and the reason it
is so widely used, is its portability. Writing our
own version of “cp” might make our code
portable, but at the expense of extra work.
Writing our own portable version of chmod,
however, is not possible. Period. For this
functionality we have to resort to using the
operating system – forgoing the need for
portability – and for some software, this is
never an issue. The function I am building up to
is system.

#include <stdlib.h>

system(“ls -al”);

The above line does exactly what it says on the
tin! It runs the given ls command in the shell,
waits until it’s finished, and continues executing
your C code. All environment variables are
inherited, and its output goes to the same
place. You may notice, however, that all output
from a system call is flushed before that of any
text printfed before it. If this is undesirable, you
can manually fflush before calling system.

This function can also copy files, mount
filesystems and shutdown the computer, but
I’m sure you can think of other examples!

