
BEGINNERS

72 LINUX MAGAZINE Issue 19 • 2002

The Answer Girl
The fact that the world of everyday computing,
even under Linux, is often good for surprises, is a
bit of a truism: Time and again things don’t work,
or at least not as they’re supposed to. The
Answer-Girl in Linux Magazine shows how to deal
elegantly with such little problems.

Shell prompt The
prompt for the shell.
Only when a character
string, which can of
course include a
username and/or
computer name, but also
the working directory
and typically ends in $, >
or (in the case of root) in
#, can be seen on the
command line, will the
shell accept commands.
Obviously, the prompt
can be individually
adapted.

Shell The command line
interpreter, which
prepares user commands
for execution by the
kernel and passes them
to it. From the viewpoint
of a command line user
the shell encompasses
the kernel like a mussel,
hence the name.

and would rather know in advance what command
was going to pass. So why don’t we just find out
what happens when we link the modifier already
mentioned :p with the exclamation mark search:

pjung@chekov:~$!ssh :p
ssh bashir :p
pjung@bashir’s password:

That was in fact wrong, since the target computer
bashir is asking for the password, :p has apparently
not stopped the last ssh command, ssh bashir, being
executed. But wait! Why does it say, in the first
answer line of the shell, that it is now executing the
command ssh bashir :p? Because all we did there was
to add the character string “ :p” to the command
line concerned. That may not have been what we
wanted, but it’s good to know it works.

The Answer Girl

COMMAND LINE
JUGGLER

The Linux command

line can do a great

deal more than the

good old DOS

command .com. Many

of its treasures are

hard to find, though,

but Patricia Jung is at

hand to help root

them out

It’s well known that typing in a command at the
shell prompt of an X terminal or a console often
produces more rapid results that a whole raft of

mouse clicks in a GUI application. With the arrow
keys, it’s possible to retrieve and edit commands
already entered from the History – the store for used
commands – and with a Return, send them on their
way again. The Tab key, for adding to commands and
file names in the bash, is also part of the general
education of a Linux user.

In most cases, that’s as far as it goes. By the time
you’ve spent five minutes digging around with up
and down arrows for an old command, which it
would have been quicker to type in afresh, you start
wondering if the shell has any more shortcuts to
offer.

Driven by this thought, the Answer Girl discovered
in previous issues the event designator !#, which
simply repeats whatever one has already entered in
the current command line. With modifications such
as :1 you can restrict the selection to the second
word of this expression (the count starts at zero), so
that an

echo hello !#:1

executes the command echo hello hello. Even if one
adds on another :p and merely outputs the command
thus created (print), but does not actually allow it to
proceed, this is something which is still nice to know.
In reality, those of us who are less practised will
usually have typed in the command completely,
before remembering the very crude syntax.

Impact point
Anyone who has ever looked over the shoulder of
some guru as he or she is typing may have noticed
that the exclamation mark peppers the command line
quite liberally, and usually in the form:

!commandstart

A !man, for example, recalls the manpage in which
you have most recently been rummaging, while !ssh
re-executes the most recently entered ssh command.
It’s quite likely that you won’t really trust this thing,

BEGINNERS

73LINUX MAGAZINEIssue 19 • 2002

X terminal: A GUI
program which provides
a command line. It
doesn’t matter whether
the program is called
xterm, konsole or aterm,
there is always a shell
running in it too.

bash: The standard shell
under Linux. Its name,
“Bourne Again Shell”,
indicates that it is
compatible with the
traditional Bourne Shell,
sh, but also comes with
a whole lot of
functionality which the
other does not have.

Built-in
The work begins for the shell when the user presses Return on
the command line. It checks to see if anything in what has been
typed in needs to be replaced or supplemented (the exclamation
mark constructs are one good example). It is only after this
preliminary work that it will charge the kernel with executing the
corresponding processes. The first word of the edited command
line is the command which is to be started.

The bash and related shells first check to see if there is an alias
of this name. If not, they check whether they are dealing with a
shell function. These can be functions implemented in the shell
itself, the Shell-Built-ins, or else they can be self-defined. Unlike
aliases, functions can not only be given arguments along the
way, but can also edit these. Only when the shell finds neither
alias nor function does an external program come into play. The
Bash-Built-in type gives the user the option of finding out
whether a command is really an independent binary or “only” a
command built into the shell. With surprising results, such as:

pjung@chekov:~$ type cd
cd is a shell builtin

So let’s put it to the test: The change directory command
(change directory) is not in fact an executable file, but a shell-
built-in, which we can overwrite with a self-defined shell
function:

pjung@chekov:~$ cd(){ echo Do you want to change to $1? U

Nothing to it... ; }

As in other programming languages, after the function name

comes a set of round brackets as an indicator that this is a
function. However, these brackets can be left empty in the bash
itself, if the function deals with (command line) arguments.

Curly brackets contain the commands to be executed when
the function is invoked. What matters most here is that each
command must end with a semicolon, and don’t forget the
space after {. With $1 we can go back to the first command line
argument of cd. If we now feel the urge to change the directory,
the computer digs in its heels:

trish@checkov:~$ cd /mnt/cdrom
Do you want to change to /mnt/cdrom? Nothing to it...

By way of comparison: It is not possible to evaluate the
parameter variable 1 with a cd alias:

trish@linux:~$ alias cd=”echo Do you want to change U

to $1? Nothing to it...”
trish@linux:~$ cd /tmp
Do you want to change to ? Nothing to it... /tmp

Here the shell takes the entire cd /tmp command and does
nothing but replace cd with echo Do you want to change to $1?
Nothing to it.... echo Do you want to change to $1? Nothing to
it.../tmp is executed. With unalias cd we cancel the alias. If we
now enter the cd command, the shell again goes for the function
defined by ourselves. To get rid of this and be able to change
directory in the normal way again with the built-in, there is
fortunately another built-in named unset: unset cd lays the ghost
of a shell variable.

Ctrl+C will in any case ensure that the wrongly
invoked command is stopped. But where was the
error? A simple space, because

pjung@chekov:~$!ssh:p
ssh bashir :p

actually shows that the last-sent (as the result of our
failed attempt) ssh-command was called ssh bashir
:p. But we don’t need the :p. Anyone who now
carries on bravely and types in ssh bashir, though a
little puzzled, can use

pjung@chekov:~$!ssh:0-1:p
ssh bashir

to display the command created when we take away
from the last-used ssh-command the reset (ssh) and
the first word (bashir).

!ssh:0-1

will now call up this command line.

Glimpses of history

Unfortunately, the bash does not save the
exclamation mark variations of the commands in its
history like this. Instead, using the arrow keys or the
shell built-in history, one finds only the version
already replaced by the shell (the history function
interprets a numerical argument as the number of
recent commands to be listed):

pjung@chekov:~$ history 3
955 date
956 ssh bashir :p
957 ssh bashir

It should be no problem to re-use the command lines
output by this, using the numbers. If, on the other hand,
!# relates to the current command line, while !! relates
to the previous one, it seems a good idea to have a go at

pjung@chekov:~$!955
date
Thu Jan 3 14:03:49 CET 2002

BEGINNERS

74 LINUX MAGAZINE Issue 19 • 2002

Emacs After vi, Emacs is
the second most
common standard text
editor, installed on
almost every Unix
system. As with vi, there
also exist various
implementations of this
editor, of which the most
popular must be the GUI
application xemacs.
Anyone who has
familiarised themselves
with its operation, which
sometimes takes quite a
bit of getting used to,
finds they have acquired
an extremely versatile
tool which can be
expanded in the
programming language
Lisp, which, with the aid
of various modules
written in Emacs-Lisp,
covers all possible areas
of application from the
programming
environment to email
and news programs.

Foreground process: If
one calls up a command
on the command line,
this shell will remain
blocked until this
foreground command
comes to an end. With
command line
commands such as ls this
is normally no problem,
but anyone wanting to
start a GUI program will
not be keen to see the
shell put out of action
for the duration of its
use. This is why
commands can be sent
into the background: if
you add an & to the
command, it no longer
blocks the invoking shell.

Figure 1: The READLINE section of the bash manpage (left)
is almost completely cribbed from the readline-manpage

and behold, it works. The event designator does not
even have to be in the first position here: ping !956:1
for example simply grabs for itself the first argument
from the 956th command in the history and thereby
executes the command ping bashir.

Almost like Emacs
It’s usually simpler if you get – as with the arrow keys
– an old command on the instruction line and then
you can edit this to your heart’s content. In charge of
this is – man bash gives a clue – the Readline library,
which in turn ensures that Emacs users can use
familiar Emacs key shortcuts to edit the command
line. (Another possible mode, and one which can be
activated in the current shell with set +o vi, is vi
mode, which is scarcely used, even by hardcore-vi
advocates.) All you have to watch out for here is the
fact that not everything that you can do in an editor
with expanded options is also useful for a line editor,
like the one the shell offers with the command line.
The Emacs mode of the shell thus covers only a tiny
fraction of the options of its namesake.

But let’s try a few things out. Since Emacs uses
Ctrl+R to search backwards (reverse), we should also
be able to do something in the bash with this key
combination. Let’s first try to ferret the ping
command on bashir out of the example history. As a
matter of fact a Ctrl+R ba produces the result:

(reverse-i-search)`ba’: man bash

The last command typed in to contain the character
string ba. Pressing the Return key to send off this
command is not an option at this point, since we
have not yet even found the command line we are
seeking. So we complement our earlier search term
ba with shi, and soon the shell suggests

(reverse-i-search)`bashi’: ping bashir

If this is not to our taste, either, the Emacs cancel
command Ctrl+X Ctrl+C (cancel without saving) will
help out. But why do it the hard way, when there’s a
simpler way: a simple Ctrl+C (familiar as the key
command to end foreground processes) works
here, too.

But what can you do when the command found,
although largely matching our expectations, does not
do so completely? An (again, not quite conforming to
Emacs) Esc makes sure that the command now found
appears in the command line for editing.

The target computer is not called bashir, but
bahsir? In Emacs Ctrl+T swaps two mixed-up letters.
So place the cursor on the h in bashir and press
Ctrl+T – the h and the s before it then swap places.

What works with a letter should also work with
entire words. Here one can be guided by the rule of
thumb that similar actions (sometimes) also have

similar shortcuts: The t as in “trade” stays, but
instead of Ctrl you should press Alt. If the cursor is
over bahsir, with an Alt+T this word trades places
with its predecessor: so ping bahsir becomes bahsir
ping. Another Alt+T will also swap them both back
again. All you need to watch out for here is that
hyphens and dots also count as “word separators”:
If, say, you have entered the name of a file (for
example index.html) at the prompt and you now
realise that you have lazily forgotten which command
to apply to it, you can write the vi (or emacs or less...)
after it:

pjung@chekov:~$ index.html vi

and press Alt+T. The result, though, is not vi
index.html, but

pjung@chekov:~$ index.vi html

The file name ending, separated by a dot from the
basic name index, counts as a word and is
consequently swapped for the character string vi. This
clearly mistaken swap action is one we would like to
reverse. In Emacs this is done using Ctrl+X+U, and lo
and behold, the bash again puts the old index.html vi
after it for show.

Pressing the backspace key twice will now ensure
that the vi at the end disappears again, but as soon
as whole words to be eradicated start getting a bit
longer, a key shortcut for deleting the word before
the cursor will save a bit of strain on your wrists. So
we make a proper job of it and set about searching
for the corresponding key combination.

All is meta
Except, what exactly are we looking for? The bash
manpage unfortunately does not contain such a
thing as a key shortcut table. But there’s something,
Readline library ..., if this is responsible for
manipulation options of the command line, then
there should be something to find under this subject.

BEGINNERS

75LINUX MAGAZINEIssue 19 • 2002

Ctrl+Y (“yank”). The appropriate Readline command is
in the section Commands for Moving and is easy to
remember with Ctrl+A. We also learn just in passing
that Ctrl+E sends the cursor to the line end, like the
useful option of jumping one word forward with M-f,
and one word backward with M-b.

Now all that’s actually missing is an overview listing
all the pre-set key shortcuts followed by their
meaning. This does in fact exist – but not in all
distributions. Anyone who uses man readline to find
an individual manpage on readline(3), need only look
in the section called DEFAULT KEY BINDINGS. But
before the rest of you start cursing your own
distributors, let me tell you: This section is almost all
the readline manual has over the bash manual. Who
has copied from whom here?

Figure 2: Rubout is just the Backspace key

Listing 1: Accented characters
In the console, accented characters only function if the Readline variables are
correctly set:

set meta-flag on
The variable meta-flag now activated ensures that
the Bash never cuts off the eighth bit of a letter.
Namely, accented characters can only be shown in 8-bit, but not in
7-bit ASCII.

set output-meta on
8 bit characters are now shown correctly (and not as
comical escape-sequences).

set convert-meta off
convert-meta is activated by default and then ensures
that 8-bit characters are converted into an escape-character and
a 7-bit ASCII character. Foreign characters obviously get messed up
when this happens, which is why this option should be deselected.

There is in fact a section called READLINE, which is
also a neat explanation as to why it is so difficult to
trawl this manpage for key shortcuts as an
inexperienced user: the documentation uses Emacs
syntax for its details.

This means that C stands for Ctrl, while M
designates a mysterious Metakey. However, there is
no such thing on PC keyboards. Depending on the
pre-configuration of your computer, the Alt and/or
Esc key, as mentioned in the manpage, takes over its
function. And it really works: instead of Alt+T, Esc+T
can swap two words, too.

However, as the manpage then makes clear, all
these details are subject to change: if documented
key combinations have effects different from those
described, then this is presumably due to individual
setting in the Readline configuration files: unless the
environment variable INPUTRC says otherwise, the
personal configuration file ~/.inputrc goes into action.
There is also the option of a global configuration file
not mentioned in the Manpages of some
distributions /etc/inputrc.

Foreign characters are a matter for
Readline
Inputrc? Anyone who has ever tried, in a badly pre-
configured distribution, to get the accented characters
on a keyboard to show up in the text console, will find
this name rings a bell. Three mysterious lines (Listing 1)
in the /etc/inputrc have already helped many people at
this point – but only now is it becoming clear what
they mean: the Readline library can be correctly
configured with the three variables set therein.

But back to business: what we are looking for is
obviously a Readline command, which deletes a
word backwards. In fact the seemingly-appropriate
sub-section Commands for Changing Text has
nothing that fits, but in Killing and Yanking
(“deleting and re-inserting”, where yank in the literal
(and figurative) sense “yanks” strings already deleted
from an ominous waste paper basket, the “kill ring”)
we get lucky:

backward-kill-word (M-Rubout)
Kill the word behind the cursor. [...]

If only we knew what a Rubout key is... fortunately the
very first hit in a Google search for Rubout key (Figure
2) informs us that it is just another name for the
Backspace key. As a matter of fact Esc+Backspace
works as desired – but not Alt+Backspace, which is a
pity. The manpage agrees though, providing Esc as
substitute for the Metakey but not the Alt which is an
option in ordinary Emacs defaults.

The annoying vi string from the “index.html vi”
example command line is thus gone – now we just
have to get back as quickly as possible to the start of
the line in order to re-insert it there with C-y, thus

