
KNOW HOW

26 LINUX MAGAZINE Issue 19 • 2002

The source for the OpenLDAP server and utilities are available from the main site
at http://www.openldap.org/software/download. At the time of writing the latest
version is 2.0.23. Be warned, though, that the 2.x version of OpenLDAP has a
greatly increased set of dependencies, mostly for the secure authentication
methods required for version 3 of the LDAP protocol. We recommend using the
versions packaged with your distribution unless you have specialist requirements.
At a bare minimum you need the package containing the slapd daemon, which
stores the directory information.

Getting OpenLDAP

Linux Authentication: Part  3

THE LIGHTWEIGHT
DIRECTORY ACCESS

PROTOCOL
In the final article in

this series Bruce

Richardson widens

the scope. As well as

acting as a password

database, LDAP can

also store a huge

range of user and

network information

What is a directory service?
A directory service is a specialised database used to store
information in a freeform, flexible heirarchy. It can hold
any kind of information but network/Internet directories
typically hold information on users or network resources.

Directories differ from standard databases in that
they are optimised for fast information retrieval rather
than robust data storage or bulletproof transactional
updates. You wouldn’t use a directory service to store
your financial records but you might well use one to
store your company address book. Any information
that isn’t constantly updated but is frequently looked
up is a possible candidate for storage in a directory.

Novell’s NDS and Microsoft’s Active Directory are two
examples of commercial, proprietary directory services.

What is LDAP?
LDAP is a protocol for accessing directory services
over a TCP/IP network. It was originally designed to
be a lightweight front-end to the much grander and
more complex X.500 directory access protocol. Since
the X.500 protocol is complex, difficult to implement
and runs over the little-used OSI network protocol
stack, early adaptors of LDAP found they were better
off using LDAP on its own as a front-end to simpler
datastores, which is how LDAP is now most
commonly used.

Why should I use LDAP?
● LDAP offers a way to centralise information on all
your network resources, greatly reducing administrative
overheads even if you run a mixture of operating systems.

● It’s an Open standard.
● Disparate applications, which normally each have

their own datastores, can share information,
eliminating duplication and a potential source of
error.

The OpenLDAP suite
The OpenLDAP project maintains and develops a suite
of software for maintaining and querying LDAP
servers. It is the only practical Open Source
implementation currently available (the Michigan
University version is a reference implementation only
and not actively maintained) and will be used for all
the examples in this article.

This article cannot hope to cover the whole vast
topic that is LDAP. After an overview of the structure
of LDAP Directories it will show you how to place
data into an OpenLDAP directory and make some
basic use of it.

LDAP objects
There are two parts to an LDAP datastore: the
schema, which defines what kind of objects may be
stored in the directory, and the database, which
contains a record for each object stored.

The schema defines what types of objects may be
stored in the directory. For each object it defines a set
of attributes – some of which are compulsory, some
optional. The schema defines how many instances of
each attribute an object may have and the properties
for each attribute (is it case sensitive, what format
may its data take, etc.) This article will not examine
the details of schemas (you will normally never have
to edit your own schema files) but it is useful to
know of their existence because you can extend the
capabilities of your LDAP directory by including new
schemas. Nor will this article enumerate the LDAP
objects found in the core schemas, or their various
attributes. Hopefully the examples given will be
enough to give you the general idea.

LDAP heirarchy
Information in an LDAP directory is organised into a
heirarchical tree structure in much the same way as



KNOW HOW

27LINUX MAGAZINEIssue 19 • 2002

your computer’s filesystem is organised. It starts with
a root node (or “suffix”), to which a number of
nodes are appended. These nodes in turn may
contain sub-nodes and so on. Each node is
represented by an object in the datastore.

The root node, for example, might be represented
by an “organization” object (“o”), while the
subnodes are most often organizationalUnit objects
(ou). A node is named for its position in the heirarchy,
starting with the least significant name. So the
Returns department within the Sales department
within the Example company would be named
“ou=Returns,ou=Sales,o=Example”.

The distinguished name
Any database needs a way of uniquely identifying
each record. LDAP objects use their dn attribute,
where dn stands for Distinguished Name. The dn is
constituted from the path to the tree node where the
object is located and an attribute that uniquely
distinguishes the object from all other objects in that
node. This attribute is referred to as the rdn (Relative
Distinguished Name) and is often the cn (Canonical
Name) or uid (login id) of the person in question. So
the dn of Harry Chalmers, who works in the Sales
department of the Example organisation, might be
“cn=Harry Chalmers,ou=Sales,o=Example” or
“uid=hchalmers,ou=Sales,o=Example”. The dn of the
Sales department itself is “ou=Sales,o=Example”.

The LDAP standard defines a communications
protocol. It’s not at all concerned with how a
directory service actually stores its information.
Current LDAP implementations use a wide range
of datastores, ranging from flatfile text databases
to fully-fledged SQL database servers.

The LDAP protocol

Figure 1: Our example heirarchy



Example structure
This article will show the creation of an LDAP
directory for the Example organisation, whose
structure is shown in Figure 1. As you can see, it’s a
very simple organisation with only two departments
(though we will add the notional “People” unit) and
two members of staff.

Configuring the server
First of all you’ll need to get the OpenLDAP server –
see the “Getting OpenLDAP” boxout. Once installed
you should edit the slapd.conf config file. This will
usually be located somewhere like /etc/ldap/. A simple
example can be seen in the sidebar. Simple it may be,
but most OpenLDAP installations will not need
anything more complex than this.

The slapd.conf file is divided into two parts. The
first contains global settings for the server and the
second contains settings for each of the various
databases amongst which the administrator chooses
to divide the directory information. The access control
settings, which look ostensibly like a third block, can
be global or back-end-specific.

Global settings
The first block of settings import schema definitions
needed for a typical range of storage tasks. The

KNOW HOW

28 LINUX MAGAZINE Issue 19 • 2002

The people unit
What happens though if Harry moves to the Accounts
section? LDAP objects can’t be renamed, so his old
entry would have to be deleted and a new one with
the new dn would have to be created. This might of
course have unwanted side effects. To avoid these it’s
usual to create a notional “People” or “Staff”
organisational unit, put all the staff in it and use that
ou in the dn. LDAP objects can be in more than one
ou, so you can still reflect your organisational structure
in the directory. With this scheme, Harry’s dn is always
“uid=hchalmers,ou=People,o=Example” no matter
how many times he moves within the company.

#################
# Global settings

# Schema and objectClass definitions
include         /etc/ldap/schema/core.schema
include         /etc/ldap/schema/cosine.schema
include         /etc/ldap/schema/nis.schema
include         /etc/ldap/schema/inetorgperson.schema

# Schema check allows for forcing entries to
# match schemas for their objectClasses’s
schemacheck     on

pidfile         /var/run/slapd.pid
argsfile        /var/run/slapd.args
replogfile      /var/lib/ldap/replog
loglevel        0

###########################
# Database backend settings

# The backend type, ldbm, is the default standard
database        ldbm

# The base of your directory
suffix          “o=Example”

# Where the database file are physically stored

directory       “/var/lib/ldap”

# Indexing options
index objectClass eq

# Save the time that the entry gets modified
lastmod on

rootdn = “uid=sysadmin,ou=People,o=Example”
rootpw = “notverysecure”

####################
# Access permissions

# The userPassword by default can be changed
# by the entry owning it if they are authenticated. 
Others should not be able to see it, except the
# admin entry below
access to attribute=userPassword

by dn=”” write
by anonymous auth
by self write
by * none

# The admin dn has full write access
access to *

by dn=”uid=sysadmin,ou=people,o=example” write
by * read

The slapd.conf file

###########################
# Database back-end settings

database        password
suffix          “ou=people,o=example”
file            “/etc/passwd”

database        ldbm
suffix          “o=example”
directory       “/var/lib/ldap”

Multiple back-end
databases 



KNOW HOW

29LINUX MAGAZINEIssue 19 • 2002

third block are administrative settings, which you
will normally never need to worry about or alter.
The “schemacheck on” setting makes the server
reject records that don’t match the defined
schemas. This may be turned off for a small
performance gain but if you subsequently enter
bogus records this can cause indexing problems and
a dramatic slowdown.

Database section
The example database configuration is very simple. It
specifies one back-end, using a traditional *nix dbm
hash-database system. This backend contains the
whole directory. It is possible, however, to split the
directory information across multiple back-ends of
differing types. All that is needed is to add entries for
each back-end, specifying the tree node from which
each back-end starts. In the config shown in the
“Multiple back-end databases” sidebar, the “people”
organisation unit information is retrieved from the
/etc/passwd file, while other information is stored in
the dbm database.

The order in which back-ends are allocated is
significant. When a back-end is assigned a suffix it
is assumed to include that node and all subnodes
which have not already been assigned. In other
words, when doing a lookup the server goes
through the list of back-ends in the order they are
defined until it finds one that includes the part of
the directory tree it is looking for, at which point
it looks no further. So if the order in which the
two back-ends in the sidebar are defined were
reversed, the password database would never be
used.

The rootdn and rootpw settings together define
the name and password of a user who may
administer the database remotely, even if there is no
actual entry for that user in the directory. This is a
quick hack to do some of the initial setup. These
settings should be deleted as soon as a proper entry
for the sysadmin user, complete with password, has
been placed in the directory.

In addition to the password and dbm
datatabases shown already, OpenLDAP can retrieve
information from SQL database servers or arbitrary
shell scripts.

Access control settings
Access control settings can be part of the global or
back-end-specific settings. Back-end settings override
global ones for their specific section of the directory
hierarchy.

There isn’t space here to go into the structure of
OpenLDAP access settings. The first rule in the
example allows any user to log in or to change their
own password, while the second sets default access,
giving full rights to an admin user and read-only
rights to anyone else.

example.ldif
dn: o=Example
o: Example
objectclass: top
objectclass: organization

dn: ou=People,o=Example
ou: People
objectclass: top
objectclass: organizationalUnit

dn: ou=Sales,o=Example
ou: Sales
objectclass: top
objectclass: organizationalUnit

dn: ou=Accounts,o=Example
ou: Accounts
objectclass: top
objectclass: organizationalUnit

dn:
uid=hchalmers,ou=People,o=Example
cn: Harry Chalmers
givenname: Harry
sn: Chalmers

mail: hchalmers@example.com
uid: hchalmers
userPassword: default
ou: People
ou: Sales
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

dn:
uid=cwalsh,ou=People,o=Example
cn: Carrie Walsh
givenname: Carrie
sn: Walsh
mail: cwalsh@example.com
uid: cwalsh
userPassword: default
ou: People
ou: Accounts
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson

Extending the server
LDAP directories are intended to be easily extensible
and the OpenLDAP server makes this simple. If, for
example, you wanted to use this server to store
Netscape Roaming Profiles then all you need to do is
include the Netscape schema and add an appropriate
access configuration line.

Enabling your changes
Once you have configured your installation the way
you want it, restart the server. From the command
line this is as simple as:

# /etc/init.d/slapd restart

Adding records to the directory
LDIF (the Data Interchange Format) is a standard
format for representing LDAP data, which is
guaranteed to work no matter what the actual
datastore back-end. An LDIF representation of the
Example organisation is shown in the sidebar
example.ldif. The records must be entered in
sequence so that no object is inserted before an
object that it relies upon. If you look at the records
you can see the Distinguished Name attributes that
uniquely identify each object, the attributes that are
used to store personal and system information about
the two staff members and the objectclass properties,
which identify the object type, according to the
directory schema.



KNOW HOW

30 LINUX MAGAZINE Issue 19 • 2002

Further uses for the directory
● Password database – The pam_ldap config

sidebar shows a sample config file for the
pam_ldap module. Properly configured, this
module can be used to add ldap-based password
authentication to any pam-enabled application,
which you will be an expert at, having read the
first article in this series.

● Network Resources – The LDAP Name Service
Switch module allows your systems to look up a
range of traditional *nix networking information
including group membership, hostnames and
mail aliases.

● Mail delivery – Most of the popular Open Source
Mail Transport Agents, such as Exim, Postfix and
Qmail, can be configured to do LDAP lookups to
make mail delivery or routing decisions.

● Netscape Roaming Profiles – With only the
smallest modifications to a standard OpenLDAP
installation you can use an LDAP server to store
users’ Netscape browser preferences (bookmarks
and so on). Instructions for this can be found in
the Linux LDAP HOWTO (see the Info boxout at
the end of the article).

● DNS Back-end – The ldap2dns utility creates DNS
records directly from an LDAP Directory. It can be
used with both Bind and djbdns to eliminate the
admin tasks of flat-file editing, zone-file editing
and all the clunkiness of maintaining a distributed
DNS set-up.

● Gateway to traditional services – One of the
database back-ends that OpenLDAP recognises
is “shell”, in which a shell script is run,
returning data from an external process in a
format that slapd can serve up as LDAP
information. There are sample scripts on the
OpenLDAP site that can be used to act as
gateways to standard *nix daemons like fingerd
but you can go further than that. Once you’ve
learned the format for returning data then
anything you can pull out of a script can be
served up as LDAP information.

Don’t stop there
You now have your directory running, a powerful set
of command line tools and a simple yet powerful
data description language with which to manipulate
and maintain it. The only limit to the uses LDAP can
serve within your network is your imagination.

Summary
LDAP can be used to centralise the administration of
a huge variety of network tasks. With careful
planning all your network resources can be described
and configured in one place, and because it’s a
popular Open standard it can be used to link all your
network operating systems. If you aren’t already
using it it’s time to ask yourself why.

Info
OpenLDAP homepage
http://www.openldap.org/
Linux LDAP HOWTO
http://www.linuxdoc.org/
HOWTO/LDAP-
HOWTO.html
LDAP/PostgreSQL
HOWTO
http://www.samse.fr/GPL
/ldap_pg/HOWTO
LDAP to DNS Gateway
http://ldap2dns.tiscover.
com/

# Your LDAP server. Must be

resolvable without using LDAP.

host ldaphost

# The distinguished name of the

search base.

base o=Example

# The distinguished name to bind to

the server with

# if the effective user ID is

root. Password is

stored in /etc/ldap.secret (mode

600)

rootbinddn

uid=sysadmin,ou=People,o=Example

# Do not hash the password at all;

presume

the directory server will do it, if

# necessary. This is the default. 

pam_password exop

Pam_ldap config

Experienced data mungers will note that this is
highly structured data, which can be seen in
example.ldif, can easily be generated through
scripts.

Entering the data
If logged in as root at the LDAP server, you can use
the slapadd tool to insert the data directly. In this
case you should shut down the server and run:

# slapadd –l example.ldif

From a remote computer you can use the ldapadd
tool:

# ldapadd –D
“uid=sysadmin,ou=People,o=Example” –h ldaphost
–f example.ldif

Finally, you can use the ldappasswd tool to give
them some proper passwords.

Using the data
Now that you have the data in the directory, you
can make use of it. The ldapsearch tool can be
used to query the server and extract data from a
specific set of records. Running a command line like
this:

$ ldapsearch –x –H ldap://ldaphost:389/ –b
“o=Example” “ou=Accounts” givenname sn mail

should return the names and email addresses of
everybody in the Accounts department.

All that effort for that?
That’s just for starters and even then it’s pretty
useful. Pipe the output of that command through
an awk or perl filter and you can feed the result to
Mutt’s query_command address lookup function.
Or you can simply point Netscape (or even Outlook
Express!) at the ldap server to have a ready-made
internal address book.


