
PROGRAMMING

65LINUX MAGAZINEIssue 19 • 2001

Just before last Christmas PythonLabs, under the
leadership of Guido van Rossum, brought us
Python 2.2. As mentioned in a previous article,

the class model has changed substantially in Python
2.2, which seems like reason enough to take a
detailed look at the changes.

What’s new?
Until now there has been a strict separation between
built-in data types, such as lists, dictionaries and
tuples, and user-defined classes. Some classes could
not derive from built-in data types. There were
wrapper modules like UserDict and UserList for
emulating built-in data types, but these were more of
a work-around.

Python 2.2 introduces something called new-style
classes (NS). This type of class is characterised by
being derived from object.

class X(object):
...

In Python 2.2 the following built-in data types are
now also NS classes and therefore derive from object:

* int
* long
* float
* complex
* str
* unicode
* tuple
* list
* dict

They can now also be used as factories; for instance,
d=dict() is identical to d={}.

In Listing 1 we are going to explain the application
of NS classes using the implementation of the class
sortedDict. sortedDict is intended to behave like a
dictionary, the difference being that the sequence of

The new class model in Python 2.2

CLOTHES
MAKETH

THE MAN
The new-style classes introduced with Python 2.2 allow cleaner

programming. Andreas Jung investigates how these innovations help

the programmer to avoid having to resort to dirty tricks

Listing 1: Dictionary with sequence
“sortedDict.py”

class sortedDict(dict):

def __init__(self):
dict.__init__(self)
self.lst = list()

def __setitem__(self,k,v):
dict.__setitem__(self,k,v)
if not k in self.lst:

self.lst.append(k)

def __delitem__(self,k):
dict.__delitem__(self,k)
self.lst.remove(k)

def keys(self):
return self.lst

def values(self):
return [dict.__getitem__(self,x) for x in self.lst]

def items(self):
return [(x,dict.__getitem__(self,x)) for x in self.lst]

if __name__ == “__main__”:

d = sortedDict()
d[‘linux’] = ‘magazine’
d[17] = 42
d[(2,3)] = (1,2)

print ‘keys():’,d.keys()
print ‘values():’,d.values()
print ‘items():’,d.items()

PROGRAMMING

66 LINUX MAGAZINE Issue 19 • 2001

the keys is maintained when reading from the
dictionary after new elements are added. Just as a
reminder, Python dictionaries do not define a fixed
key sequence, that means keys() does not necessarily
return the keys in the order in which they were
added to the dictionary.

The script in Listing 1 provides the following
output:

keys(): [‘linux’, 17, (2, 3)]
values(): [‘magazine’, 42, (1, 2)]
items(): [(‘linux’, ‘magazine’),
(17, 42), ((2, 3), (1, 2))]

Line 1 defines the new class sortedDict as being
derived from the built-in dictionary class dict. It is not
necessary to specify object explicitly, as
dict itself already derives from
object. The constructor in lines 3
to 5 initialises the dictionary and
also defines the internal variable
lst, which is going to store the
keys in sequence. lst is needed
later to obtain the sequence of the
keys when reading from the

dictionary. __setitem__() and __delitem()__ are
required if new keys are added or deleted. When
setitem is used a new key is appended to lst, while
use of delitem deletes a key. Our example overrides
the keys() method so that the list of keys is returned.
The same is true for the methods values() and items().

Iterator extension
Until now you had to use __getitem__() in Python
classes in order to iterate objects within a for loop.
This approach can be ambiguous and prone to errors.
Instead, Python 2.2 allows you to define __iter__()
within a class and to return an iterator object. Python
invokes __iter__() once when entering the for loop.
Essentially an iterator implements a next() method

that Python calls at each iteration
within the for loop and which

returns the next element of
the object.

To demonstrate this, we
are going to extend our sortedDict

class by an iterator interface. In previous
versions of Python it was not possible to

iterate directly over a dictionary, only over the list
returned by keys(), values() or items().

Figure 1: The “diamond rule” illustrates
inefficient name resolution

Listing 2: Extended sortedDict.py
1 class sortedDict(dict):
2 ..
3
4 def items(self):
5 return [(x,dict.__getitem__(self,x)) for x in self.lst]
6
7
8 class sortedDictIterator:
9
10 def __init__(self,lst):
11 self.lst = lst
12 self.__num = 0
13
14 def next(self):
15
16 if self.__num < len(self.lst):
17 self.__num+=1
18 return self.lst[self.__num-1]
19 else:
20 raise StopIteration
21
22 def __iter__(self):
23 return self.sortedDictIterator(self.lst)
24
25
26 if __name__ == “__main__”:
27
28 d = sortedDict()
29 d[‘linux’] = ‘magazine’
30 d[17] = 42
31 d[(2,3)] = (1,2)
32
33 for key in d:
34 print ‘Key=%s, value=%s’ % (key, d[key])

PROGRAMMING

67LINUX MAGAZINEIssue 19 • 2001

For our example we are going to introduce the
new class sortedDictIterator. __iter__() returns an
instance of this class as soon as a for loop is used to
iterate over an instance of sortedDict. A reference to
the dictionary’s keys initialises the constructor of the
iterator object. At each iteration of the loop next()
returns the next element of the keys until the end of
the list is reached. The implementation returns the
keys similarly to the implementation of the iterator
object for dictionaries in Python 2.2. When a
StopIteration exception is raised this indicates the end
of the iteration.

The extended program in Listing 2 provides the
following output:

Key=linux, value=magazine
Key=17, value=42
Key=(2, 3), value=(1, 2)

Multiple inheritance
Up until now name resolution during multiple
inheritance has often led to unexpected results. This
becomes particularly obvious when looking at the
example of the famous diamond rule (Figure 1).

When invoking save() on an instance of D, the

base classes B and A are searched first,
followed only then by C
(depth-first rule). That
means the old
resolution algorithm
calls A.save(), even
though C.save()
would be more logical.
NS classes use a new
resolution method, based
largely on Common Lisp:

● All base classes are listed according to the depth-
first rule, with base classes that are used several
times getting multiple listings: [D B A C A]

● Duplicates are removed from the list, leaving only
the last occurrence of the element: [D B C A]

● The remaining list is searched from left to right in
order to find the method (i.e. in the above
example C.save() would be found)

Attribute access
Until now, access to the attributes of an object took
place in two stages. First a check whether the
required attribute existed in the instance’s dictionary

PROGRAMMING

68 LINUX MAGAZINE Issue 19 • 2001

__dict__. If it did not, __getattr__() was called. This
approach is very popular for calculating attributes on
the fly (also known as computed attributes), but it
can easily lead to infinite recursion. For NS classes
there is a new __getattribute(attr)__ method, which is
called every time an attribute is accessed.

Properties and slots
Properties are a special type of

attribute. They behave like
attributes but have their own
read, modify and delete functions.
The new property() function

packages the relevant get, set and del
functions and creates a property object. The use

of this sort of property is externally transparent
(Listing 3).

In Python 2.2 it is possible to limit the number of
attribute names permitted for an object using the
__slot__ attribute. This makes access to other
attributes impossible (Listing 4).

Static methods
Static methods are methods that are not tied to any
instance of an object but are instead called directly

through the class. In contrast to normal class
methods self is omitted as the first argument and the
method itself is defined as a static method by a
staticmethod() call.

Listing 5 creates a static method called foo().
Calling this through the Demo class or one of its
instances returns “a b” in both cases.

Backwards compatible?
Old-style and new-style classes co-exist peacefully in
Python 2.2. Any semantic changes relate solely to
new-style classes (and these are easily identifiable by
being derived from object).

Conclusion
The unification of built-in data types and user-
defined classes makes programming under Python
easier, by avoiding redundant code and through
clear structures such as properties. Many important
details can’t be explained here due to the limitations
of space. Guido van Rossum has described all the
changes at length at python.org; a shorter summary
can be found at amk.ca. Some of the innovations
are hard to understand at times, but use of trial and
error and Python’s interactive mode should allow
you to familiarise yourself with the new concepts
quite quickly.

The author
Andreas Jung lives near Washington D.C. and works
for Zope Corporation in the Zope core team. Email:
andreas@andreas-jung.com

Listing 3: properties.py
class Test(object):

def set_number(self,n):
self.n = n

def get_number(self):
return self.n*self.n

def del_number(self):
del self.n

number = property(get_number,set_number,\
del_number,”Number”)

T = Test()
T.number = 5
print T.number
del T.number

Listing 4: slots.py
class Demo(object):

__slots__ = [‘x’,’y’]

Output
>> from slots import Demo
>> D = Demo()
>> D.x = 2
>> D.y = 4
>> D.z = 2
Traceback (most recent call last):

File “<stdin>”, line 1, in ?
AttributeError: ‘Demo’ object has no U
attribute ‘z’

Listing 5: static.py
class Demo:

def foo(x,y):
print x,y

foo = staticmethod(foo)

Demo.foo(‘a’,’b’)
demo = Demo()
demo.foo(‘a’,’b’)

Info:
Python 2.2: http://www.python.org/2.2
Guido von Rossum: “Unifying types and classes in
Python 2.2”:
http://www.python.org/2.2/descrintro.html
AMK: “What’s New in Python 2.2”:
http://www.amk.ca/python/2.2

