O T T OO0 OO O T O o o e e O O T -]_l"l']_"]ﬁ{"'lJ{'J[".IF]_l']l"::llr}F""il']l"

Tk P o BT

 fevab et Saregam o1 o 0 T T T A T SLUL LU L UL LU LU _L!-.Iu!.lJ.UJ_.u.u.._Ln.lu'

The new class model in Python 2.2

CLOTHES
MAKETH

leadership of Guido van Rossum, brought us

Python 2.2. As mentioned in a previous article,
the class model has changed substantially in Python
2.2, which seems like reason enough to take a
detailed look at the changes.

J ust before last Christmas PythonLabs, under the

What's new?
Until now there has been a strict separation between
built-in data types, such as lists, dictionaries and
tuples, and user-defined classes. Some classes could
not derive from built-in data types. There were
wrapper modules like UserDict and UserList for
emulating built-in data types, but these were more of
a work-around.

Python 2.2 introduces something called new-style
classes (NS). This type of class is characterised by
being derived from object.

class X(object):

In Python 2.2 the following built-in data types are
now also NS classes and therefore derive from object:

int

I ong
float
conpl ex
str

uni code
tuple
|'ist

di ct

I .

They can now also be used as factories; for instance,
d=dict() is identical to d={}.

In Listing 1 we are going to explain the application
of NS classes using the implementation of the class
sortedDict. sortedDict is intended to behave like a
dictionary, the difference being that the sequence of

THE MAN

The new-style classes introduced with Python 2.2 allow cleaner
programming. Andreas Jung investigates how these innovations help
the programmer to avoid having to resort to dirty tricks

Listing 1: Dictionary with sequence
“sortedDict.py”
class sortedDict(dict):

def __init_ (self):
dict. __init_ (self)
self.lst = list()

def _ setitem (self,k,v):
dict. setitem (self,k,v)

if not k in self.lst:

sel f.Ist.append(k)

def _ delitem (self, k):
dict. delitem (self,k)
sel f.Ist.remve(k)

def keys(self):
return self.|st

def val ues(self):
return [dict. getitem (self,x) for x in self.lst]

def itens(self):
return [(x,dict.__getitem (self,x)) for x in self.lst]

if _name__ =="“_min__
d = sortedDict()
d[‘linux’] = ‘nagazine’
d[17] = 42
df (2,3)] =(12)

print ‘keys():',d.keys()
print ‘values():’,d.values()
print “items():’,d.itens()

Issue 19 ¢ 2001 ' LINUX MAGAZINE B

COU11J110101011000101100100 20007 27 T00 200101011001 01010001 0U001001 1110010100

-
1
L]
L
L] w k= - L
' e
|

Listing 2: Extended sortedDict.py

class sortedDict(dict):

def itens(self):

1
2
3
4
5 return [(x,dict.__getitem (self,x)) for x in self.lst]
6
7
8

class sortedDictlterator:

10 def __init_ (self,Ist):
11 self.lst = Ist
12 self. num=10

14 def next(self):

16 if self. num< len(self.lst):
17 sel f.__num+=1

18 return self.lst[self. |
19 el se:

20 raise Stoplteration

num 1]

22 def __iter_ (self):
23 return self.sortedDictlterator(self.lst)

26 if _name__ == “__main_":

28 d = sortedDict()
29 d[‘linux'] = 'nagazine’
30 d[17] = 42

31 d (2,3)] =1(1,2

33 for key in d:
34 print ‘Key=%, value=%" % (key, d[key])

the keys is maintained when reading from the
dictionary after new elements are added. Just as a
reminder, Python dictionaries do not define a fixed
key sequence, that means keys() does not necessarily
return the keys in the order in which they were
added to the dictionary.

The script in Listing 1 provides the following

output:

keys(): [‘linux’, 17, (2, 3)]
values(): [‘magazine’, 42, (1, 2)]
items(): [(‘linux’, ‘magazine'),
(17, 42), ((2, 3), (1, 2))]

Line 1 defines the new class sortedDict as being
derived from the built-in dictionary class dict. It is not
necessary to specify object explicitly, as
dict itself already derives from
object. The constructor in lines 3
to 5 initialises the dictionary and
also defines the internal variable
Ist, which is going to store the
keys in sequence. /st is needed
later to obtain the sequence of the
keys when reading from the

a LINUX MAGAZINE ’ Issue 19 « 2001

o
p ot “
¥
c‘ gelf):”’
GLA:e? 5"’6(
o 1
oS

Figure 1: The “diamond rule” illustrates
inefficient name resolution

dictionary. __setitem__() and __delitem()__ are
required if new keys are added or deleted. When
setitem is used a new key is appended to Ist, while
use of delitem deletes a key. Our example overrides
the keys() method so that the list of keys is returned.
The same is true for the methods values() and items().

Iterator extension
Until now you had to use __getitem__() in Python
classes in order to iterate objects within a for loop.
This approach can be ambiguous and prone to errors.
Instead, Python 2.2 allows you to define __iter__()
within a class and to return an iterator object. Python
invokes __iter__() once when entering the for loop.
Essentially an iterator implements a next() method
that Python calls at each iteration
within the for loop and which
returns the next element of
the object.
To demonstrate this, we
are going to extend our sortedDict
class by an iterator interface. In previous
versions of Python it was not possible to
iterate directly over a dictionary, only over the list
returned by keys(), values() or items().

For our example we are going to introduce the
new class sortedDictlterator. __iter__() returns an
instance of this class as soon as a for loop is used to
iterate over an instance of sortedDict. A reference to
the dictionary’s keys initialises the constructor of the
iterator object. At each iteration of the loop next()
returns the next element of the keys until the end of
the list is reached. The implementation returns the
keys similarly to the implementation of the iterator
object for dictionaries in Python 2.2. When a
Stoplteration exception is raised this indicates the end
of the iteration.

The extended program in Listing 2 provides the
following output:

Key=li nux, val ue=magazi ne
Key=17, val ue=42
Key=(2, 3), value=(1, 2)

Multiple inheritance

Up until now name resolution during multiple

inheritance has often led to unexpected results. This

becomes particularly obvious when looking at the

example of the famous diamond rule (Figure 1).
When invoking save() on an instance of D, the

base classes B and A are searched first,
followed only then by C
(depth-first rule). That
means the old
resolution algorithm
calls A.save(), even
though C.save()

would be more logical.
NS classes use a new
resolution method, based
largely on Common Lisp:

All base classes are listed according to the depth-
first rule, with base classes that are used several
times getting multiple listings: [D B A C A]
Duplicates are removed from the list, leaving only
the last occurrence of the element: [D B C A]
The remaining list is searched from left to right in
order to find the method (i.e. in the above
example C.save() would be found)

Attribute access

Until now, access to the attributes of an object took
place in two stages. First a check whether the
required attribute existed in the instance’s dictionary

PROGRAMMING

2622GB in size,

THE TERAVALILT STORAGE SERVERS from Dngita,
Meuworks provide wumplete newsworked sTorage of up 1o

The leravault 4165, pictured right, features haroware
RAILD storage with hol-swap vapatility, aual ineel

A NEW ERA IN
NETWORK STORAGE

0.96TB = £3371

2.56TB = £9317

Pentium lll processors, up to 6.0GB of RAM and
miuftiple Ethemet inerdaces. Linua, UNIX, Windows and
Apple clierts are suppuried, ard the systen van bs
administered remotely with the Included web based
imerface or By 55H,

From now on netwond attached storage needn’t cost an
arm and a leg. Multi-terabyte netwons storage from
wrder £10,000, For Tull details, VISt wew. dnub.com,

mraraie A 185

4. 58TH of han-mmen HUD coompe AL mckmoury chgsssm. ¢ Bl e
pPrEssEEs | ap w B of AR 5 pus e PHEPLID reitarrs
iy | e e TSI P Han 0@ oot T Dy af T
#4.1 pperatl 0 penr o st mmoeeny O EBAAT + WAT

B s i oy e e e) - D treerd

& L nechITERTE: soveny with GUSRTE 0. siln awiiib.
= e T ormvunme gy defais

(i) Digital Networks

Issue 19 ¢ 2001 LINUX MAGAZINE

BU11J1101010110001011400107 22007 07 T0TL 2RT101011001 0101400 100001001 1110010100

Listing 3: properties.py

class Test (object):
def set_nunber(self,n):
self.n =n
def get _nunber(self):
return self.n*self.n
def del _nunber(self):
del self.n
nunber = property(get_nunber, set_number,\
del _nunber, " Nunber ")

T = Test()
T.nunber = 5
print T.number
del T.nunber

__dict__. If it did not, __getattr__() was called. This
approach is very popular for calculating attributes on
the fly (also known as computed attributes), but it
can easily lead to infinite recursion. For NS classes
there is a new __getattribute(attr)__ method, which is
called every time an attribute is accessed.

Properties and slots
Properties are a special type of
attribute. They behave like
attributes but have their own
read, modify and delete functions.
The new property() function
packages the relevant get, set and del
functions and creates a property object. The use
of this sort of property is externally transparent
(Listing 3).

In Python 2.2 it is possible to limit the number of
attribute names permitted for an object using the
__slot__ attribute. This makes access to other
attributes impossible (Listing 4).

Static methods
Static methods are methods that are not tied to any
instance of an object but are instead called directly

Listing 4: slots.py

class Demp(object):

_slots__ = ['x","y']
Qut put
>> fromslots inport Deno
>> D = Dem()
>> Dx =2
>> Dy =4
> Dz =2
Traceback (nost recent call last):
File “<stdin>, line 1, in ?
AttributeError: ‘Denmp’ object has no 2
attribute 'z’

a LINUX MAGAZINE ’ Issue 19 « 2001

Listing 5: static.py
class Deno:

def foo(x,y):
print X,y

foo = staticnethod(foo)

Denmo. foo(‘a’,’b")

demo = Den()

demo.foo('a’,’'b")
|

through the class. In contrast to normal class
methods self is omitted as the first argument and the
method itself is defined as a static method by a
staticmethod() call.

Listing 5 creates a static method called foo().
Calling this through the Demo class or one of its
instances returns “a b” in both cases.

Backwards compatible?

Old-style and new-style classes co-exist peacefully in
Python 2.2. Any semantic changes relate solely to
new-style classes (and these are easily identifiable by
being derived from object).

Conclusion

The unification of built-in data types and user-
defined classes makes programming under Python
easier, by avoiding redundant code and through
clear structures such as properties. Many important
details can’t be explained here due to the limitations
of space. Guido van Rossum has described all the
changes at length at python.org; a shorter summary
can be found at amk.ca. Some of the innovations
are hard to understand at times, but use of trial and
error and Python's interactive mode should allow
you to familiarise yourself with the new concepts
quite quickly.

Info:

Python 2.2: http://www.python.org/2.2

Guido von Rossum: “Unifying types and classes in
Python 2.2":
http://www.python.org/2.2/descrintro.htm/

AMK: “What's New in Python 2.2":
http:/fwww.amk.calpython/2.2

The author

Andreas Jung lives near Washington D.C. and works
for Zope Corporation in the Zope core team. Email:
andreas@andreas-jung.com

