
FEATURE

20 LINUX MAGAZINE Issue 19 • 2001

Rootkits are part of

the cracker’s

standard repertoire,

allowing them to

hide their activities

and the results. If

you find a rootkit on

your machine it is

high time for some

“root treatment”.

Boris Schauerte

explains

Rootkits are one of the most
popular aids of crackers and script
kiddies. These collections of tools

make an attacker’s job that
much easier, as they ensure
that once a break-in has
been successful they can
easily regain root access
within the system by
installing “backdoors”.
They also disguise the
cracker’s presence, so
that the administrator
won’t even notice that
the uninvited guest is
controlling his or her
machine. To top it all off,
rootkits cover up any tracks
left during the break-in, so
you won’t even know that it’s
taken place.

Many rootkits are capable of collecting
information about the machine and its
environment, such as the passwords of the local
machine or interesting data, which they filter from
network traffic with the help of a “sniffer”. This
knowledge makes it easier for intruders to spread
their attentions to neighbouring machines.

Rootkits most commonly take the form of Trojan
horses. These are patched system programs that
behave according to the cracker’s wishes. However,
there are also rootkits whose main part is a
kernel module – these don’t even require any
host programs.

Trust no-one
Rootkits with patched programs work on the
assumption that the superuser is going to trust the
output of these programs. This assumption is
normally correct, as administrators generally have no
other choice. The rootkit modifies important system
tools in such a way that they no longer output any

information that could betray the
intruder. For instance, the ps command
from a rootkit does not show certain
processes, while ls conceals the
existence of some directories and files.

Normally this sort of manipulation
would be hard to detect unless

different tools are used for
checking. You could, for
example, compare the ls
listing with the output
from a find call.

However, this will only be
successful if the intruder

hasn’t also replaced find
with a patched version.

The situation is slightly
different for rootkits that have

their own kernel modules. Such a kit
usually consists only of the module in

question and tools designed to remove any
traces of the break-in. Tasks, such as hiding

the existence of certain files and users or inserting
backdoors, are normally dealt with by these modules
within the kernel, which means that all programs
are affected.

System break-in
Before attackers can install their favourite rootkits
they need to acquire root permissions. The associated
break-in normally follows a set pattern. When
attacking a system directly, the cracker generally tries
to collect as much information as possible about his
or her target. The cracker will probe for weak points
and then exploit them. Also common are
indiscriminate searches for victims supported by
network scanners, which may also be used to
automate the break-in.

Once inside the target machine the intruder
eliminates the traces of the break-in. In order to do
this the log entries are removed as well as other
evidence pointing to them. The majority of this

The dangers of rootkits

ROOT
TREATMENT

The author
Boris Schauerte lives in
Dortmund and works
mainly in the field of data
and Internet security. He
programs enthusiastically
under BSD and Linux
systems. At the moment
he is particularly working
on the design and
implementation of Free
operating systems.

FEATURE

21LINUX MAGAZINEIssue 19 • 2001

process is carried out by programs like Zap, which
remove all entries in the log files utmp, wtmp, lastlog
and messages. Other tools clean additional files in
/var/adm and /var/log.

The clean-up is usually restricted to the standard
files, since it is very time consuming to remove
traces manually. This can result in the cracker
overlooking some log files, enabling the
administrator to detect the break-in after all. A
special case is remote logging, where syslog
continually transfers its entries to another machine.
As long as the attacker has not cracked the log host
he will not be able to clean its files.

Once the cracker arrives in the target system, the
backdoors provided by the rootkit can be installed, as
well as any other programs. The rootkit is often
transferred before he covers his tracks as the
transfer itself creates new traces. The source of
the tools are mostly public servers rather than
the attacker’s own machine.

Local backdoors
There are two types of backdoors: local backdoors
and network backdoors. A local backdoor allows an
existing local user account to gain root permissions.
In this case the cracker logs into the system as a
normal user and executes a program that provides
him with a root shell. The backdoor is normally
password-protected, so it can’t be accessed by any
other users.

Suitable host programs for backdoors are login,
chsh, passwd or any other program with SUID root
permissions. Listing 1 shows how this works (without
a host): the user only has to start the program and he
immediately becomes root. The file even assigns itself
SUID root permissions when it is started by root. The
effect can be seen in Figure 1. By the way, this simple
example contains a buffer overflow error, which can
be ignored for our purposes.

The second part of this example, setting the user
ID and the group ID to 0 and starting a shell, is
similar to what you find in the program patches of
rootkits, which may require their own passwords first.
Particularly interesting for such amendments are
programs that already provide similar functions, for
example su or login, as it is much more difficult to
find the changes in these than in other programs.

Network backdoors
The second group of backdoors are network
backdoors. These allow the cracker to enter a system
he has already cracked at any time via the network
without having a normal user account. Here again
there are stand-alone backdoors and ones that hide
within normal services. Patched versions exist of
virtually all Internet daemons that have or can acquire
root permissions, such as inetd and sshd.

If the attacker wants to use his or her backdoor
the network version generally also requires a
password. With well-hidden backdoors this password
has to be entered at a point where other data would

Listing 1: Simple local backdoor
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

char buf[40];

/* Is root executing the program? */
if (getuid () == 0)
{

/* Set the file owner to “root” */
printf (“Set file owner to root.\n”);
sprintf (buf, “chown root %s”, argv[0]);
system (buf);

/* Set the SUID flag */
printf (“Set SUID flag.\n”);
sprintf (buf, “chmod +s %s”, argv[0]);
system (buf);

}
/* A normal user is executing the program */
else
{

/* Set UID and GID to 0 (root) */
if ((setuid (0) != 0) || (setgid (0) != 0))
{

printf (“File is not SUID root.\n”);
return -1;

}
printf (“Open root shell.\n”);
execl (“/bin/sh”, “sh”, 0);

}
return 0;

}

Figure 1: The program in listing 1 assigns SUID root
permissions to itself when started by root. After
that it can turn any user into root

FEATURE

22 LINUX MAGAZINE Issue 19 • 2001

normally be expected. If the cracker is recognised at
the door it attaches a shell to the port or executes his
commands and transfers the output.

There are many varieties of stand-alone network
backdoors; the differences lie mostly in the way they
are implemented or in the cryptographic method
used. Most of these backdoors offer at least simple
encryption in order to protect the transferred data
from sniffers and therefore from the eyes of the
administrator. This provides additional protection
for crackers and makes it more difficult to trace
their actions.

Network sniffers
The Ethernet sniffer forms an important part of many
rootkits, as this allows the cracker to filter out
important information from the network traffic and
to store it. This will often enable him to crack other
systems on the network, or to learn internal and
confidential information.

The sniffer is generally a stand-along program that
needs to be protected by a number of modified
programs. For this reason rootkits containing a sniffer
will offer patched versions of ifconfig, netstat and
similar utilities, so that these normally dependable
tools will no longer be able to find the sniffer.

Despite all protective measures there are many
varied strategies for detecting rootkits in your system.
With the help of a few tricks most of the rootkits
currently in circulation can be tracked down and
expelled from the system fairly easily.

Prevention is better
Ideally an administrator should take preventative
measures to detect rootkits even before a break-in is
suspected. In any case the administrator is going to
require the most important system programs on a
write-protected medium; it’s vital that the

administrator can guarantee these programs haven’t
been tampered with. They also need to be
independent of all other files on the machine. For
this reason they should ideally be statically linked,
as manipulation could also occur within the
shared libraries.

However, even these tools are powerless against a
manipulation of the kernel. The only defence in this
case is to boot up the system from a secure medium
(boot disks with a disk operating system or a live CD),
to mount the hard disk as read only and then to
examine the system.

One important weapon in the fight against rootkits
are checksums, which can be used to determine
whether files have been changed. Simple CRC sums
are not suitable, however, since some tools ensure
that the patched file has the same CRC sum as the
original. The checksums must be created before any
manipulation can take place, ideally directly after the
installation of the system. The lists should be stored
on a write-protected medium to prevent attackers
from tampering with them.

Armed with this type of list the administrator can
check the system’s programs on a regular basis. This
test can also be completely automated using a cron
job, provided that attackers can’t amend the MD5 list
and don’t search the cron files for relevant jobs or
modify either md5sum or the kernel.

Instead of the rather simple md5sum, more
complex tools such as Tripwire or Aide are also
suitable. However, in many cases the simpler program
will be sufficient. The important thing above all is to
back up and check the data often enough, and to
ensure that no program is overlooked in this process.

Finding rootkits
Even if no backups and checksums are available, all is
not lost; there are still some ways of finding rootkits.
A tell-tale sign of many cracker tools stems from the
fact that they require their own subdirectory or their
own configuration file. Many rootkits write these to
/dev in the hope that no one will look there. This
directory usually doesn’t contain any normal files,
only device files. A simple find call is enough to
detect any interlopers (see also Figure 3):

find /dev –type f

The patched programs naturally try to open their
config files. Consequently many modified files
contain the string /dev. This is also easy to find with
the help of the strings command:

strings patched-file | grep /dev

A somewhat more complicated method of finding
rootkits is the system call-trace. All system calls made
by a program can be monitored using strace. The

Figure 2: The program md5sum compares the current MD5 checksum
with the stored values: 10 files have been modified. Using strings we
can determine that we are dealing with Ambient’s Rootkit (ARK)

FEATURE

23LINUX MAGAZINEIssue 19 • 2001

output of this can be quite sizeable, but also very
revealing because when a rootkit wants to open one
of its configuration files this is done using the
relevant sys call.

/proc, the administrator’s friend
When looking for rootkits the /proc directory plays a
very significant role. A lot of important information
that rookits are trying to hide can be found here.
The programmers of cracker tools are aware of this,
and some rootkits do hide some of the information
from /proc, but this directory is still almost always
worth a look.

Amongst other things, /proc lists all processes that
are running along with their process ID. If ls and find
have not been manipulated in such a way that they
will hide some of these files then a comparison of the
output from /proc with that of ps may already be
enough to detect a rootkit. For hidden processes a
look in /proc/PID/stat or in the easier to understand
/proc/PID/status is well worth it. It is also possible that
ps and top remain unchanged but that /proc no
longer shows every process.

Entries with network information can also be
informative. The most important task is to check the
open ports and to compare them to the output of
netstat or a similar tool. This can be done in the
folder /proc/net, which contains files that will give
you the open sockets for every protocol.

A portscan of your own machine from a secure
source can also be very revealing. If this throws up open
ports not shown by netstat this is a pretty definite
indication of a rootkit. Unexpected open ports should
set an administrator’s alarm bells ringing in any case.

Rootkit found: what now?
Should your investigations actually turn up a rootkit,
the first thing is to separate the system from the
network. This enables you to examine the machine
properly and to clean it. During your analysis it is not

only important to find out who has broken in, more
significant is how the cracker gained access to the
system and which weak point he used to do it. This is
where log files once again play a crucial role.

One important question is whether the system
needs to be completely re-installed or whether it is
sufficient to remove the modified programs and
backdoors. There is no easy answer to this. It depends,
amongst other things, on how much you can find out
about the break-in and whether you can really trace all
the cracker’s actions. Otherwise it is possible that you
might overlook a backdoor and the intruder could
break in again as soon as the machine is back on the
network. In that case nothing would have been gained
from an administrator’s point of view.

You can use the fact that crackers normally return
to your advantage, however. Provided the
administrator knows all of the cracker’s access points,
but not his identity, an administrator can set a trap
for his adversary. A “honeypot” allows him to watch
every action of the attacker, to track him and to
study his behaviour.

Such studies enable the administrator to draw
conclusions about the cracker’s motives and to
anticipate his future behaviour. If he has only cracked
this machine by accident it is unlikely that he will
bother it again. After all, he must assume that the
administrator has now plugged the gaps and will be
reading his log files with renewed interest. However, if
the intruder was searching for internal information or
had other motives for breaking into this host specifically
then he probably continues to pose a threat.

Info
“Rootkits – How Intruders Hide”: http://www.
theorygroup.com/Theory/rootkits.html
“Know Your Enemy”: http://project.honeynet.
org/papers/

You can
use the

fact that
crackers
normally
return to

your
advantage

Figure 3: Telekit hides its
configuration files in /dev. A
simple find call is enough to
track them down

