
KNOW HOW

50 LINUX MAGAZINE Issue 20 • 2002

CVS: The Concurrent Versions System

LATEST AND
GREATEST

If you’re interested

in helping to develop

Open Source

software then

getting to know the

Concurrent Versions

System is the logical

first step. Colin

Murphy shows us

how to get started

with CVS

Software development under Linux can be a real
joy, thanks to the free movement of source
code. Anyone can get involved in moving a

project forward and you may not even need to have
all that much programming experience to make a
difference. In some cases you may not even have to
code at all to get involved; what some projects
desperately need are graphics designers and people
to help write documentation.

To get involved, you first need access to the project
and for that you need access to the source code. Part
of the beauty of Open Source programming is the
opportunity it gives you to look at other people’s
work and, if you feel up to it, to change it, possibly
even to improve on it. What is even more useful is
the chance to see the additions that other people
have made to a code base for a project, to see how it
grows and changes over time.

Software bugs
Developing software and developing bugs in that
software go hand in hand, and bugs are bound to
appear in software development. When projects are
open to a wide-ranging ‘team’ of developers, the
danger that bugs will be introduced is increased.
More importantly, the nature of these bugs may not
even be noticed until much further along the project’s
development cycle. Such bugs may not even be
caused by bad or plain wrong programming – it’s
more likely that a previously written piece of code
proves not to tie up well enough to the project now.

So how do program developers get around this
major problem? What is needed is to keep copies of
all of the old versions of the program development so
that you have something to refer back to if and when
something appears to be going wrong.

Seeing as though a change to a piece of code
correcting an error might be only a few bytes long,
keeping a back-up of all previous pieces of code would
result in a huge archive of very similar data. What is
needed is a system that records just the changes made
to the code base. Thankfully, that’s why we have CVS,
or the Concurrent Version System, which maintains a
central repository for people to access and modify.

If you’re only just starting out in program
development you may only have come across CVS very
briefly, when exploring the very latest version of a piece
of software, that cures a bug or adds a much-needed
feature that’s just not present in the stable version.
With that must come a warning: you must always
remember that this is an unstable version and to treat it
as such. By using it, you should also remember your
contribution to the project – bug reports.

For the most part you will be using CVS in a
Server/Client mode, most likely via the Internet. CVS
is a command line utility, though there are some
graphical front-ends, which we will round the article
up with in a moment.

Firstly, do you have cvs on your system? You can
quickly check this with:

[colin@desk]$ cvs ––version

which should return some details, otherwise you will
have to find your disc set and install it. The current
version is 1.11.1p1.

You will need to know where the CVS repository is
that you want to access – the project we’re going to
pick is the CVS project itself, which seems only
fitting. This lives at cvs.cvshome.org in the /cvs
directory. It is to here that we need to login, usually
using some sort of password server for cover. So:

[colin@desk]$ cvs –d
:pserver:guest@cvs.cvshome.org:/cvs login

will give us access, once we have entered the
password, which will be prompted for, usually you
just need to hit the Enter key. Almost always,
anonymous access is granted for people to download
the project’s code, but the exact details of this can
vary. Often the login will be anonymous@ (instead of
guest@, as in the example above) and the password
will be blank, as above.

Depending on how often you are planning to take
code from this CVS tree, you may want to consider
setting the Environmental variable $CVSROOT for
that tree, if you are only going to take code

KNOW HOW

51LINUX MAGAZINEIssue 20 • 2002

like add, remove and commit, diff against the
repository or view of the log messages in list form, all
of which is of much more use when you are actually
contributing to the development of the project.

After selection of a start directory, the program
enables you to automatically find all CVS projects
contained in sub directories using the “Project-
Explorer”, and enables the user to add them and
displays the corresponding tree on the desktop. All
features can be accessed by pull-down menus or a
simple click on the right mouse button and may be
applied to both single and multiple files or
complete trees.

infrequently, then typing it in each time is not too
great a burden. You need to save the parameter that
is passed by the ‘–d’ switch, in this case the
:pserver:guest@cvs.cvshome.org:/cvs.

To allow you to download the project, which is
called ccsv in this case, you use the checkout
command

[colin@desk]$ cvs –d U

:pserver:guest@cvs.cvshome.org:/cvs U

checkout ccvs

If all is going well you will then get to see a listing of
all the files that are now being downloaded, which
get stored in a directory with the project name in the
directory you ran the cvs command from, in this case
/home/colin/ccvs.

[colin@desk]$ cd ccvs
[colin@desk]$ ls

will give me a listing of all the files and subsequent
directories in the ‘cvs’ project.

From here on, you are at the mercy of the project
developers. Hopefully, if it is a good project, you will
find that you now have some documentation that
someone new to the project can read and
understand. The important files to look out for are
README and INSTALL. If there are not enough clues
in these two files to take you further then you may be
looking at a project that has yet to fully develop its
documentation, either because it is small, or that no
one wants to do the job. You still have the option of
contacting the project developers by email, to ask for
advice and, if you are let down here, then you at least
know that the project isn’t worth bothering with.

Sometimes, you may find that the project
homepage has the option to allow you to ‘browse’
the cvs tree. If this is the case, it can sometimes be
better to download some of the documentation files
from this browsing session rather than download the
whole tree only to find out that there is no
documentation, or that it is in German, or some such.

Graphical front-ends
Graphical front-ends are available for CVS, to take
away some of this command line misery.

LinCVS
LinCVS is a German project, but thankfully with most
pages also in English. It acts as a reliable graphical
front-end for the CVS-client supporting both CVS
versions 1.9 and 1.10, perhaps even older ones. It
enables the user to check out, or download, a
module from the CVS tree and import modules to the
repository if you have been granted access rights. You
can also update and retrieve the status of a working
directory or single files and use common operations

Accessing
CVS trees
with LinCVS

Info
CVS homepage:
http://www.cvshome.org/
The CVS homepage also
contains a very good
manual
LinCVS: http://www.
lincvs.org/
Cervisia: http://cervisia.
sourceforge.net/

Cervisia –
with a
clever tree
display

Cervisia
Cervisia is another graphical front-end for CVS client-
side actions, which has some really neat features like
retrieving directories and single files and examining
their status and a graphical diff utility which
highlights the differences between different revisions
in the same repository.

Getting involved
At best, this is supposed to be a two way process.
Contributions are a start, but you may want to help
further, with the documentation or, if you are up to
it, the coding. CVS is used for uploading
contributions and when you get to know a project’s
development team well enough, they might even
give you your own account and password, but more
of that will have to be left for another article.

