
KNOW HOW

42 LINUX MAGAZINE Issue 20 • 2002

Linux Networking Guide: Part 1

CREATING A
CONNECTION

Bruce Richardson

presents the first

part of our guide to

configuring Linux

networks from the

command line. In this

issue we look at how

to connect a

computer running

Linux to a network

Whatever the virtues of the applications that
can be run on Linux, one of its greatest
strengths is its power and flexibility as a

network operating system. Some people (including
me) believe that you haven’t really done grown up
computing until you’ve done networked computing.

This series of articles is designed to show how
Linux networks can be configured using the simple
command line tools and text configuration files
common to all Linux systems, using tools that are
common to kernels from 2.0.x to 2.4.x. Where of
interest, examples of configuration from specific
distributions will be given but the emphasis
throughout will be on portability.  The article will
restrict itself to IPv4 only.

This article describes how to choose and install a
network card and how to configure and activate a
network interface. Future articles will build on this to
show how complex networks can be build from
simple tools.

Network essentials
To function as part of a network your computer
needs, as a minimum:

● A physical connection to the network. There are
quite a few ways to connect to a modern network
but this article will concentrate on the most
common way: the internal Network Interface Card,
henceforth referred to as a NIC.

● An address on the network. It’s no use being able
to talk to other computers if they can’t find a
return address to talk back to.

● A way of determining how to reach any given
address. That is to say, given an arbitrary address
to connect to, can we find it on this network, can
we reach it through this network or must we find
some other route?

This article covers items one and two. The next article
will use item three as the basis for a demonstration
of how a Linux box can be turned into a router and
gateway for a network.

The physical connection
There are several ways to connect a PC to a network
but we’re going to look at internal network cards. If
you’re doing this on a budget, maybe with second
hand kit inherited from a kind benefactor, choice may
not come into it. If you do have a choice then there
are several things to consider:

Price You get what you pay for. Cheap generic cards
can be found for as little as £12 but don’t expect
them to perform well at high loads or to auto-
negotiate connections reliably (if at all). It may also be
difficult to identify the chipset on a generic card,
which will make it difficult to find the correct driver.
Personally, I would be sure to buy a reliable, well-
known brand and I wouldn’t consider spending less
than £30 on a card.
Network type What kind of network do you want
to connect to or set-up? A BNC/Coax network or
RJ45/Cat5 network, 10Mbps or 100Mbps (See the

BNC versus RJ45
Older Ethernet networks (and cheap home network starter kits) use cards with
BNC connectors, connected together with coaxial cable. BNC NICs can be
identified by the stubby metal cylinder that is the connector. This kind of set-up is
slow (maximum theoretical speed of 10Mbps) and fiddly (the cable must be
terminated at each end, you may need to cut and crimp the cable yourself).
However, it does have the advantage that you can connect more than two
computers using just one cable: you simply add T-connectors to the cable at
appropriate intervals.                                             

Newer networks use cards with RJ45 connectors, connected together with UTP
cable. RJ45 nics have sockets which look similar to those on modems. The cards
typically come in 10Mbps or 100Mbps (Fast Ethernet) speeds, 100Mbps being the
standard at the time of writing (Gigabit Ethernet is mostly restricted to the core of
high-performance networks). This kind of network is faster but a UTP cable can
only be used to connect two devices. If you want more than two computers on
your network you will need to connect them to a hub or switch. 

It is possible to get combo cards, which have both BNC and RJ45 connectors,
though I’ve never seen one that was faster than 10Mbps.        



KNOW HOW

43LINUX MAGAZINEIssue 20 • 2002

The software connection
Before we can begin configuring the network
interface we first have to make sure that we are
using the right driver. Now, I absolutely recommend
that you load NIC drivers as modules. It makes
troubleshooting and testing so much easier:

● You can load and unload different modules, or the
same modules with different parameters, as many
times as you like with no need for a reboot.

● There is no need to recompile the kernel. Even if
the module(s) you need (or want to test) aren’t in
your current set, you can compile them separately
from the kernel (though you will need the config
used to compile the kernel). If the driver is
compiled into the kernel and you want to try a
different driver or change the parameters passed to
the driver then you will need at least to reboot and
(in the former case) to recompile the kernel as
well. This can become tedious very quickly.

Note: Do not panic! The default kernels that are
installed with most distributions come with a
selection of drivers that cover all the common
network cards. You probably won’t have to do more
than load and unload a few modules until you get it
right.

There’s not enough space here for a lesson in
kernel/module compilation, so I will assume that you
have a system with networking enabled in the kernel
(as it is in all the default kernels shipped with any
distribution I ever heard of) and with a selection of
modules, which hopefully includes the one to match
your card.

BNC versus RJ45 boxout)? If you have the option,
choose a Fast Ethernet set-up. It’s the current
standard for connecting workstations and the
equipment will be easier to configure and
troubleshoot.
Support Obviously you want a card that is supported
by Linux but you should also try and find out how
well the card is supported, whether the driver is
stable or experimental etc. In this case the Internet is
your friend. Find any identifying information about
your network card (the make and model for
reference, failing that the FCC ID number, which
should be printed on the card somewhere, failing
that any identifiable numbers on the card). Go to the
Google Linux search and type in the information. You
should find plenty of information to help make your
decision. You may find it useful to cross-check
whatever you find with the networking
documentation accompanying the kernel source,
which can normally be found in
/usr/src/linux/documentation/networking.

Installing and testing the card
I’m going to assume you know how to install an
extension card into a PC. Once it is in we can do
some basic checks to see if the hardware is
functioning properly. This is important: there’s no
point going on to later steps if the card isn’t
functioning, you’ll only waste a lot of time.

Start the machine and have a look at the card. Any
decent, recent card will have at least one status light,
one of which will show if any power is getting to the
card (another reason to avoid cheap or old kit).

If your card seems to be getting power, get a cable
and connect the card to another networking device,
preferably one that has a connection status light (e.g.
a hub or a good quality card in another PC). Don’t
forget to use the right kind of cable for the
connection (see the Plugging your network together
boxout) and be sure that the devices match (i.e. both
operate at the same speed or at least one is capable
of auto-negotiation). A connection light should show
on one or both devices.

If you get no power light then either you need to
reseat the card in its slot or the card is broken. If you
get a power light but no connection light then you
may have the wrong cable, one/both of the
connected devices may not be functioning or the two
devices may be mismatched (i.e. they are at operating
at different speeds and the fast one isn’t auto-
negotiating): try changing the cable or the device you
connect to until you get a working connection. If you
can’t get a connection light after trying several
different cables and devices then your card is probably
broken. When troubleshooting a problem connection,
it’s important to change one thing at a time. That
way, if you do finally get a connection, you will be
able to identify the problem component conclusively.

Plugging your network together 
You can build a network out of all kinds of different parts. An IP packet doesn’t
care about the type of cable it travels across or its speed. On your network you
might have a 10Mbps link from your PC to a hub, a 100Mbps link from the hub
to a switch further up the line and a Gigabit connection between the switch and
the application servers.

The physical connections are not hard to set up, since most modern networking
kit automatically senses the speed of the device at the other end of the cable and
will slow down to match slower kit (this is called auto-negotiation). There are even
hubs with both RJ45 and BNC connectors. Do remember to use the right kind of
cable. For 100Mbps speeds the UTP cable must be Cat 5 quality or higher. Cat 3
UTP is enough for 10Mbps but means you’d have to rewire before upgrading.

The simplest type of network is formed by linking two computers together. If
using a UTP cable you will need crossover cable rather than a standard UTP patch
cable. You can also connect multiple computers through a hub or switch and can
chain hubs and/or switches together to create as large a network as you like. Use
crossover cable to chain hubs and switches but standard patch cable to connect
PCs to hubs or to switches.



KNOW HOW

44 LINUX MAGAZINE Issue 20 • 2002

Select a module
If you didn’t identify the correct driver when doing
your Google search, now is the time. Compare the
information you found then with the help in
/usr/src/linux/documentation/networking. If you find
more than one match, don’t panic, just repeat the
process described below until you find one that
works (you can leave fancy comparison-testing till
you know more). Be sure to note any special
parameters that may need to be passed to the
module (another good reason not to buy cheap:
decent modern cards usually autoconfigure).

Load the module
Say you want to try the eepro100 module. Load it:

# modprobe eepro100

Now, check the end of /var/log/messages for any
messages from the module. If the module didn’t
work then you will see obvious error messages: try

another module or try reloading this one with
different parameters. A successful load will give
output like this:

Apr 1 20:15:33 localhost kernel: eth0: U

Intel EtherExpress Pro 10/100
Apr 1 20:15:33 localhost kernel: Board U

assembly 689661-004
Apr 1 20:15:33 localhost kernel: General U

self-test: passed
Apr 1 20:15:33 localhost kernel: Serial U

sub-system self-test: passed
Apr 1 20:15:33 localhost kernel: Internal U

registers self-test: passed
Apr 1 20:15:33 localhost kernel: ROM U

checksum self-test: passed
Apr 1 20:15:33 localhost kernel: Receiver U

lock-up workaround activated.

Success! Light a cigar (away from the equipment).
But note that eth0 in the first line, we need it for the
next step. What does it mean? It’s the interface name
assigned to the card.

Boo-boos
If you compiled the driver into the kernel, smack
yourself on the wrist and prepare for multiple reboots.
Each time you reboot, check the messages that scroll
past. Too fast? Once it’s finished booting, log in and
check the contents of /var/log/dmesg. You should find
the output from the driver somewhere in there.

Configuring the network interface
Loading the correct driver gets us halfway there. Now
we need to configure and activate the network

Debian network config file
# /etc/network/interfaces –– configuration file for ifup(8), ifdown(8)

# The loopback interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 192.168.10.10
netmask 255.255.255.0

An IPv4 address is a 32 bit number, which is usually shown in
dotted quad notation: four decimal numbers separated by full
stops (e.g. 192.168.10.5). This number is further split into two
parts, one identifying the network on which the host (machine) is
located and one uniquely identifying the host within that network.

You can’t tell which part is which just by looking at the address
(some IP addresses are commonly split in particular ways but don’t
rely on this). To identify the network and host parts of an IP
address, you need to know the netmask for the network on which
the IP address is located. The netmask specifies which bits of an
address are the network address and which are the host address.
The 32 bits may be divided in any permutation but it is most
convenient and least confusing simply to split them into two
blocks, with the high block of bits representing the network and
the low block the host. Network bits have a value of 1 and host
bits a value of 0, so that AND-ing an IP address and its netmask
give you the network address.

In our example network, the highest 24 bits of the address are
the network
address. So the netmask could be represented by the binary

number 11111111111111111111111100000000. This is obviously
not convenient, so netmasks are usually shown in one of two
ways:

● In dotted quad notation. Our example netmask would be
255.255.255.0

● A slash and a decimal digit, appended to an IP address, the digit
showing how many high bits comprise the network address. So
192.168.10.0/24 would indicate that the first three bytes are the
network address and that the final, least significant byte is used
to allocate host addresses. Since one address is reserved as a
broadcast address, that leaves 255 host addresses we can use.

So why all this trouble? The answer is that before an IP packet can
be delivered to its destination we need to know if it is on the local
network or a remote one. 

The network address may be further divided into a network
number and a subnet number. This distinction will be explored in
the next article: for the purposes of this article no distinction is
made.

IP addresses and netmasks 



KNOW HOW

45LINUX MAGAZINEIssue 20 • 2002

connection. For this example, I am going to assume
we are connecting to a network with address
192.168.10.0/24 and that this computer will have the
address 192.168.10.10 on that network. If this
means nothing to you then you should read the
boxout on IP addresses and netmasks.

To do this, we use the ifconfig command, giving as
parameters the interface name, the address and
netmask:

# ifconfig eth0 192.168.10.10 netmask U

255.255.255.0

If you get no feedback then in good *nix fashion this
means that nothing went wrong. So now you should
list the interfaces on your computer, by running the
ifconfig command with no parameters. The output
should include a record like this:

eth0 Link encap:Ethernet  HWaddr U

00:01:02:87:18:AB
inet addr:192.168.10.10  U

Bcast:192.168.10.255  Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST  MTU:1500  U

Metric:1
RX packets:819780 errors:116 dropped:0 U

overruns:0 frame:232
TX packets:593233 errors:0 dropped:0 U

overruns:0 carrier:69
collisions:230 txqueuelen:100 
RX bytes:873172906 (832.7 MiB)  TX U

bytes:48467017 (46.2 MiB)
Interrupt:9 Base address:0xec00 

Before you light yourself another cigar, let’s try pinging
the address of another network host (the ping
command sends a stream of IP packets to the
requested address and reports their progress). On this
example network, there’s a router at 192.168.10.1, so:

# ping 192.168.10.1
PING 192.168.10.1 (192.168.10.1): 56 data bytes
64 bytes from 192.168.10.1: icmp_seq=0 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=1 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=2 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=3 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=4 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=5 U

ttl=255 time=0.2 ms
64 bytes from 192.168.10.1: icmp_seq=6 U

ttl=255 time=0.2 ms

Success! You managed to connect to a network and
talk to another host on the network – the aim of this
introductory article. But we’re not finished yet.

Up and down
OK, now that you have configured and activated your
interface, you can deactivate it any time you like. To
bring it down run:

# ifconfig eth0 down

Now run ifconfig with no arguments – you’ll see that
the eth0 record has disappeared. You can bring the
interface up again by running the above command
but replacing down with up. Try it and then run
ifconfig again to see if the interface has come back
up with the same settings.

Achieving permanence
What we have achieved so far is fair enough, but it
won’t survive a reboot and even Linux boxes have to
be shutdown once in a while (only for hardware
maintenance, obviously).

So what do you do if you want this interface to be
configured automatically when the machine restarts?
You could create a script to configure the interface
and add it to the sysvinit scripts. But you don’t have
to: while there is no definitive Linux standard for this,
there is a semi-standard. Most distributions enable
you to record the interface’s details in a text config
file, to bring the interfaces so defined up and down
with the ifup and ifdown tools and to specify which
interfaces should be activated on startup. Example
configuration files for Debian and Red Hat are shown
in the two boxouts, Debian network config file and
Red Hat interface config script. In both cases, the
interface we created above would be configured and
activated as part of the startup process.

Summary
This article has shown you how to get a simple
network connection up and running. I hope it has
been enough to get you interested and experimenting.
But there’s still a lot we haven’t covered. The next
article will explain subnets and routes, show the
difference between hubs, switches and routers,
introduce the IP tool (brought in with the 2.2.x series
of kernels) and explain how you can turn a Linux box
into a network router/gateway. See you then.

Red Hat interface config script
# /etc/sysconfig/network-scIpts/ifcfg-eth0

DEVICE=eth0
USERCTL=no
ONBOOT=yes
BOOTPROTO=
BROADCAST=192.168.10.255
NETWORK=192.168.10.0
NETMASK=255.255.255.0
IPADDR=192.168.10.10


