
PROGRAMMING

57LINUX MAGAZINEIssue 20 • 2002

Perl: Part 2

THINKING IN
LINE NOISE

Not as loopy as it sounds
All programming languages use flow control
statements to influence the execution of code. Flow
control statements come in two varieties,
‘conditional’ and ‘loops’; it may come as no surprise
that Perl has an abundance of each.

The simplest of the conditions is the if statement,
which evaluates conditions and executes a branch of
code dependent on the result.

if ($count == 10) {
print “Count is 10\n”;

}

In this example we test to see if ‘$count’ has a
value of 10, if the condition is satisfied
(i.e. $count does equal 10) the code
block within the curly braces is
run, otherwise the code block
is skipped and program
flow resumes after the
closing brace of
the code block.

It is sometimes desirable to execute an alternative
code block if the condition is not met and for this
we use else:

if ($count != 10) {
print “Count is not ten...\n”;

}
else {

print “Count is 10\n”;
}

The above example tests the value of $count, if
$count is not 10, then the message “Count is not
ten...” is printed and program control is returned
AFTER the last curly brace. If the condition is not met

then the code block defined after the else
statement is executed,

and the message
“Count is 10” is

printed.
Making a

condition statement
simple to read is the best

way of ensuring that the
logic tests work as expected. It

is also worth considering
swapping the values in a test

condition where one is an immutable
value, this means if you mistakenly

code an assignment operator rather than
the numeric equality test (= instead of ==)

the code will return an error at compile time,
rather than creating a time consuming bug.

if (10 == $count) {
print “Count is 10\n”;

}
else {

print “Count is not ten...\n”;
}

Sometimes it is necessary to test for more than one
condition and take an action dependent upon the
condition that is successful. Perl permits this by using
the elsif statement to test several operations

One of Perl’s tenets

is to make simple

tasks easy. With the

initial hurdle of Perl’s

extensive use of

sigils behind us,

Dean Wilson and

Frank Booth move on

to more practical

aspects of the

language; namely

conditions, looping

and files

PROGRAMMING

58 LINUX MAGAZINE Issue 20 • 2002

expressions are evaluated, it’s not necessary, but it
is good practice.

if ((exists($tb2{Virgil})) &&
($cliff_door eq ‘open’)) {

print “Lift off!\n”;
}

if ((exists($music{‘ominous shaky violins’})
) ||

($diary eq ‘Tracy family holiday’)) {
print “Warning, impending catastrophe with

few casualties\n”;
}

In situations where the if/unless statement is used to
perform a single task, and there is no else or elsif
used, the code can be rewritten thus:

print “$count is not 10\n” unless $count == 10;

Note the brackets are not required around the
condition, and that there are no curly braces around
the code to be evaluated. This will only work for code
that executes one line of code and does not use else
or elsif (yes unless can use else and elsif too).

Looping structures enable programmers to
eliminate a lot of the repeated functionality within a
program. The most common looping structure is the
for loop, which comes in many guises.

for ($i=0; $i < 5; $i++) {
print “The standard C like ‘for’

declaration\n”;
}

@array = (1,2,3,4);

foreach $count (@array) {
print “$count: To iterate over each item in

an array\n”;
}

for $count (1..4) {
print “$count: To iterate over a range

operator\n”;
}

for (1..4) {
print “$_: use \$_, the default variable\n”;

}

print “$_: use \$_, the default variable\n” for
1..4;

Each of the above examples is a for loop, which will
repeat four times. It is a matter of preference which
method you prefer.

The first method is possibly obscure, if you are new
to programming. Don’t worry, it’s only there to keep
C programmers happy. The loop declaration is split
into three parts, any of which may be empty. The first
section initialises the variables for the loop – this is on
the first pass only so it is traditionally where variables

sequentially, note as soon as one set of conditions are
satisfied only the code block belonging to that
condition will be executed and the remaining
conditions will not be evaluated. else can be added at
the end of if and elsif statements as a catch-all that is
executed when no other conditions are met.

$traffic_light = ‘blue’;

if (‘red’ == $traffic_light) {
print “Stop!\n”;

}
elsif (‘amber’ == $traffic_light) {

print “Lights about to go to red\n”;
}
elsif (‘flashing amber’ == $traffic_light) {

print “Proceed with caution\n”;
}
elsif (‘green’ == $traffic_light) {

print “Go\n”;
}
else {
print “traffic lights are not

$traffic_light\n”;
}

Boolean tests can sometimes become difficult to
understand if they contain negatives. Perl provides
the condition operator unless to help reduce the
confusion. Compare these statements:

if (!exists($valid{$user})) {
print “Hey, you aren\’t allowed here!\n”;

}

The same thing but easier to read
unless (exists($valid{$user})) {
print “Hey, you aren’t allowed here!\n”;

The difference between the previous two
conditions may be slight as we’ve not yet
encountered compound conditions, which depend
on the outcome of a sequence of conditions. Each
condition is connected by either an && or the ||. If
an event depends on two conditions being met we
could use &&, in the example below I’ve used
brackets to force the precedence in which

Don’t
worry, it’s

only there to
keep the ‘C’

programmers
happy

PROGRAMMING

59LINUX MAGAZINEIssue 20 • 2002

are set to their start value. After the first semi-colon
is the condition section, which holds the conditions
required to exit the loop. This is tested before each
iteration: if this was empty the loop would be
infinite, standard condition operators are used. Lastly
the modifier section is evaluated after the condition
section is failed.

Using an array in a for or foreach loop (the two
functions are interchangeable) is easy, just put the
array in parentheses and the loop will iterate over
every element of the array. A variable can be
specified to hold the current value from the array, or
the default variable ($_) can be used implicitly.

The last example shows that as with the if and
unless statements, the syntax of the for statement
can be reversed if only a single action is desired. The
rules for dropping the parenthesis and curly braces
are the same as for the if/unless given above.

The last commonly encountered loop is the while
loop. The while loop executes until its conditional test
is no longer met.

$count = 0;

while ($count++ < 4) {
print “$_: again using a default variable\n”;

}

This code won’t run as $count is 0 which is
‘false’
$count = 0;

while ($count) {
print “$_: again using a default variable\n”;

}

$count = 3;
print “$_: again using a default variable\n”
while $count––;

There are additional, less used, control statements
that will be introduced when their unique properties
make them applicable.

The truth is rarely pure and never
simple
Condition statements evaluate whatever they’re given,
that is the contents of the brackets: variables, strings,
numbers and functions. Throughout the discussion of
conditionals you may have noticed the references to
truth and wondered what was considered to be ‘true’
in Perl. To illustrate the value of truth we will use
comparison operators and some examples.
Comparison operators are used to determine the

outcome of conditions. These consist of two types of
comparison: ‘relational operators’ and ‘equality
operators’, both compare two values and return an
outcome. The outcome of a comparison operation is
called ‘true’ or ‘false’.
In reality, as with most things, Perl has a wealth of

values to represent ‘true’ or ‘false’. Most things are
true with the exception of ‘’,undef, \0, 0 and eof
(end of file).
In the example below it can be seen that the order

for equality operations is irrelevant. Put simply it
either is or isn’t equal.

$value = 4;

Equality operators
print “the value is 4\n” if $value == 4:
print “the value is 4\n” if 4 == $value;

For relational operations the value to the left of the
operator is the subject of the comparison, and
whether it is true or false depends upon its
comparison against the right-most value (comparator).

Relational operators
print “the value is greater than 3\n” if $value
> 3;

This will not print as 3 is less than 4
print “the value is less than 3\n” if $value <
3;

Comparison
operators

are used to
determine

the outcome
of conditions

String-wise comparisons
These are the most commonly used comparison operators. The first operator on
each line is used for comparing strings; the second for numeric values.

Equality operators
eq, == True if the values are equal
ne, != True if the variables don’t match

Relational Operators
lt, < True if the value is less than the comparator
le, <= True if the value is less than or equal to the comparator
gt, > True if the value is greater than the comparator
ge, >= True if the value is greater than or equal to the comparator

A simple aide-memoire is: string comparisons consist of letters.

PROGRAMMING

60 LINUX MAGAZINE

Different operators are used to compare strings and
numbers. It’s vital to ensure the right type of
comparison is used to avoid introducing subtle bugs.
When run, the code below shows one way in which
the wrong comparison may used.

$count = ‘1’;
$result =’’;

if ($count == 1.0) {
$result =’It is’;

}
else {

$result =’It is not’;
}
print “$result the same as the number 1.0\n”;

if ($count eq ‘1.0’) {
$result =’It is’;

}
else {

$result =’It is not’;
}
print “$result the same as the string 1.0\n”;

Numeric comparisons compare the numeric part of
the value to the numeric part of the comparator. It is
perfectly valid to compare the numeric parts of values
in this fashion.

print “There’ll be no green bottles\n” if
$count < ‘1 Green Bottle’;

String comparisons act upon the entire value and use
a comparison method called string-wise
comparison. String-wise comparisons use the ASCII
representation for a character to determine whether
it is greater or lesser than the comparator. Any
character of a lower ASCII value than its comparator
is said to be greater than the comparator in a string-
wise comparison. String comparisons don’t have
magnitudes as numbers do, so ‘byzantine’ is less than
‘Roman’, this is because upper case characters occur
earlier in ASCII representation.

IO, IO it’s off to work we go
In Unix everything is a file so file handling is a very
important part of any language using the Unix
platform. Perl has one of the most comprehensive
sets of file manipulation commands. The most
common method of interacting with files is by
opening a file and retaining what is called a ‘handle’
to the file. A file handle is a way of referring to a file
when you wish to read or write to it.

open (HANDLE, ‘>afile’);

print HANDLE “Hello\n”;

close HANDLE;

This example opens the file afile in the current
directory for output (clobbering the existing file of
that name) it then prints the line “Hello\n” to the file
afile. After printing the line the file is closed and the
program exits. While this is a simple example these
basic principles hold true for most of Perl’s commonly
used IO functionality.

In the previous example we opened the file so
we could write out to it. The way we plan to use a
file is used is determined by the redirection prefix
before its name.

‘<’ Read from a file. This is the default if no
prefix is given.
‘>’ Over-write or create the file.
‘>’ Create a file if none exists, append to a file
if it does.

Printing a line to a file is achieved by using the print
function and specifying the file-handle to be used.
The default file-handle is the standard output
(STDOUT), usually the screen. The example below
illustrates this:

print STDOUT “I’m on the big screen!\n”;
print “I’m on the big screen too!\n”;

When the program has finished executing the file-
handle is implicitly closed. However it’s good practice to
close file-handles when you are done with them in case
the file-handle name is reused in the same program.

It’s
vital to

ensure the
right type

of
comparison
is used to

avoid
introducing

subtle
bugs

File tests
Common file tests include:
–T True if file is a text file
–e True if file exists
–d True if file is directory
–r True if file is readable
–w True if file is writable.
–x True if file is executable.

Issue 20 • 2002

PROGRAMMING

61LINUX MAGAZINEIssue 20 • 2002

In the following example we read the contents
of a file using a while loop to read every line of
the file. For every line it prints the line number and
the line.

open (I, ‘<file’) || die “file: $!\n”;
while (<I>) {

print “$. : $_”;
}
close I;

The first line of the example uses a common Perl
idiom to test whether the open file operation is
successful. If it fails then the die function is called,
exiting the program with an error message defined
in the same fashion as a print function and setting
the script’s return code. In the string passed to the
die function we also pass $!, another of Perl’s
internal variables. When used in string context, $!
reports the system error string related to the last
command.

The $. is yet another of Perl’s internal variables and
it contains the current line number of the file being
read. When we concatenate $. and $_ in the print
statement we iterate over every line in the file and
print both the line number and the contents of the
line to the screen.

Before you open a file you often wish to determine
some of the attributes of the file (often you want to
know if it already exists) and to aid you in this Perl
offers a large selection of file tests (Which are listed
fully in perldoc perlfunc).

if (–T $file) {
open (I, ‘<file’) || die “file: $!\n”;
while (<I>) {

print “$. : $_”;
}
close I;

}

The previous example has been modified so that we
only enumerate lines in a file if it is a text file;
printing binary files to screen is seldom rewarding.

Now that we have covered files and determining
their type, let’s move on to a related topic,
directories. In essence, working with directories is
similar to opening files:

opendir(DIRHANDLE, $dirpath) || die “Failed to
open current directory: $!\n”;
@Files = readdir DIRHANDLE;
closedir DIRHANDLE;

We start by calling opendir with the name of the
directory handle we want to retain and the
directory we want to open, as with the file
operation open, opendir returns true if the
directory was opened successfully. The array @Files
is populated with the name of each file in $dirpath
by calling the function readdir. Filenames in @Files

do not have a full path, only the filename itself.
Finally, the directory handle is closed. As with
closing file handles, this is done implicitly at the
end of the script.

This example is a more practical demonstration of
reading directories:

opendir(CURRENT, “.”)
|| die “Failed to open current directory:

$!\n”;

@Files = readdir CURRENT;
closedir CURRENT;

foreach $filename (@Files) {
$linecount = 0;
if (–T $filename) {
open(TEXTFILE, “$filename”) || die “Failed

to open: $!\n”;
while(<TEXTFILE>) {

$linecount++;
}
close TEXTFILE;
print “$filename has $linecount lines.\n”;

}
}

The example above illustrates all the principles in
this section. We start by trying to open the current
directory and assign it to the handle ‘CURRENT’, if
this fails we exit the program and display the
reason for failure. If everything is fine @Files is
populated with the name of each file in the
directory and the directory handle is closed. The
foreach loop is the main body of the program, it
iterates through the array and each text-file (–T
$filename determines this) the file is opened the
number of lines it contains counted before closing
the file and printing the total. The line count is not
reported if the file is not text or it can’t be
opened. If the file cannot be opened we print the
failure message and exit the program. ■

Before
you open

a file
you often
wish to

determine
some of
the file

attributes

