
BEGINNERS

72 LINUX MAGAZINE Issue 20 • 2002

Dr. Linux
Complicated organisms, which is just what Linux
systems are, have some little complaints all of
their own. Dr. Linux observes the patients in the
Linux newsgroups, issues prescriptions here for
the latest problems and proposes alternative
healing methods.

Shell/bash The
“mediator program”,
which accepts your
commands, processes
them and finally passes
them to the kernel for
execution. Under Unix
operating systems you
can choose between
diverse shells with
varying functionality and
operating philosophies.
As a rule, on Linux
systems the bash
(“Bourne Again SHell”)
is used as the standard
shell, but other shells
such as the csh (“C-
Shell”) and/or the tcsh
(an extended C-shell
with the option of
editing the command
line) are also frequently
installed.

Dr. Linux

TEST CASE

get to know my system better so that I know what
kind of command I have just put in. How do I do this?

Dr. Linux: With the shell function type plus the
command name, you can see the origin of your
selected program:

perle@maxi:~> type suspend
suspend is a shell builtin

suspend is thus a built-in command of the shell,
while...

perle@maxi:~> type dir
dir is aliased to ‘ls -l’

... dir is an alias for the command ls -l.

perle@maxi:~> type gimp
gimp is /usr/bin/gimp

Do you want to find

out what lies behind

a command or who

has just logged on?

Marianne Wacholz

shows how all this

can be tested with a

few inputs on the

keyboard

Stop root!

QI like to interrupt programs, which I start on a
shell, with the key combination Ctrl+Z, in order

to execute other commands in the meantime.
Unfortunately this doesn’t work when I edit/configure
files using su as root. Is there any other command to
temporarily deactivate the root shell created by su
and to bring it back again later?

Dr. Linux: There is indeed and the command is
suspend, which is entered in the bash (or csh/tcsh).
suspend is a so-called shell built-in, meaning it is a
command forming part of the scope of performance
of the respective shell. It interrupts the superuser
message with su in the same way as the key
combination Ctrl+Z does with normal
programs/processes, i.e. the root shell is put to sleep
and instead you get back your original shell, on
which you can carry out new commands completely
as normal. First you will see the output Stopped
followed by which command has just been stopped:

perle@maxi:~> su
Password: your_root password
maxi:/home/perle # suspend
[1]+Stopped su
perle@maxi:~> [input tasks to be performed as
Perle user]

To get back to the root shell, enter the command fg
(foreground). You leave this in the usual way with the
command exit:

perle@maxi:~> fg
su
maxi:/home/perle # [other commands to be
executed as root]
maxi:/home/perle # exit
exit
perle@maxi:~>

Knowing what you’re doing

QI start programs on a console by typing in their
names. But basically, I’m often not clear as to

whether this is a proper, compiled program or for
example a shell script that I’m dealing with. I’d like to

BEGINNERS

73LINUX MAGAZINEIssue 20 • 2002

Alias A new name or
else an abbreviation for
a self-defined
command. You can find
out which alias
commands in your
system are “pre-
defined” if you enter
the command “alias”
with no further details
in the bash.

Hash table: If a
command is executed in
a bash, then the shell
remembers this
command in the form
of the path specification
and saves it in the so-
called Hash table. If you
start the same program
again, the bash reads
the path specification
from the Hash table,
instead of first foraging
through the entire
search path for the
corresponding
executable file. This
speeds up the execution
of the command.

Variable Many
functions in the bash
(and thus the whole
system) are controlled
by variables. User-
defined and system
variables can be
modified at any time for
the current shell. On the
other hand the user has
read-only access to the
so-called “special
variables”. The
command set will tell
you which variables are
set in the system (in
addition to other
information such as on
shell functions) on the
output screen.

su This command enables you to change to a
different user ID on the command line. When you
do this, a new shell with the user identification of
the user specified as argument is created. If the
latter is missing, it allows su to work for a short
period as superuser root. Provided you are not
already logged on as root, you will need the
password for the selected user. You can drop the
new identity again by entering the command
“exit” on the command line.

If on the other hand, as in the case of gimp, this is a
real file (or a link) in the filesystem, you can research
more deeply with the command file. In the same
simple way as using type, this identifies any
unknown file types. For example, this means we can
find out that /usr/bin/gimp is a proper binary
program, while the command groups is an
executable shell script:

perle@maxi:~> file /usr/bin/gimp
/usr/bin/gimp: ELF 32-bit LSB executable, Intel
80386, version 1,
dynamically linked (uses shared libs), not
stripped
perle@maxi:~> file /usr/bin/groups
/usr/bin/groups: Bourne shell script text

When file cannot tell what kind of file a given entry is
(or if the file must not be displayed), you will receive
in the output the keyword “data”. Separate details
are provided by type with the output:

command is hashed (Path/to/command)

This means that the corresponding command has
already been executed in the current session and has
therefore been stored by the bash in the Hash table:

perle@maxi:~> type gimp
gimp is hashed (/usr/bin/gimp)

Checked out

QAlthough I do have a bit of experience already
with my Linux system, it sometimes happens

that I edit a file in an editor, but when I come to save
my work I discover that I have no write privilege for
it. Is there a neat little command, with which I can
query rights in advance, without searching through
the long directory lists created by ls –l?

Dr. Linux: The command with which you can get
rapid and specific information about a file or
directory is called simply test and is a shell built-in. It
is called up as follows:

test –option filename_or_directoryname

This is how you check, with the following example,
whether you have writing rights with your current
identity (–w stands for write) for the file /etc/fstab:

perle@maxi:~> test –w /etc/fstab

Anyone who is now perplexed and wondering where
test displays the test result, will probably be
disappointed by the answer: it doesn’t. This built-in is
in fact designed to be able to formulate conditions in
shell scripts along the lines of “If the writing rights
for /etc/fstab match, then execute the following”,
and hence one needs no verbal outputs on the
standard output. On the other hand, the return value
of the command is interesting.

This is saved for the last respective command in the
Variable $?. If it contains the value 0, then the test
was successful; so it is possible to modify the content
of the file. But if the command writes echo $?, with
which one outputs the content ($) of the variable ?
on the command line, a value not equal to 0 on the
screen, then the test was not successful; ergo there
are no writing rights for the corresponding file. This
sounds much more complicated than it is though,
just look at the two steps on the command line:

perle@maxi:~> test –w /etc/fstab
perle@maxi:~> echo $?
1

The output 1 is quite definitely not equal to 0; which
means that the user making the query has no write
privileges for the file with the Filesystem Table.

Further useful options of test are:

● -d: Is the argument file a directory (“directory”)?
● -e: Does the file even Exist?
● -r: Can I read it?

Queries with test are, by the way, always processed
in the following sequence: if you are the owner of
the file, test checks the rights of the file owner. For
non-owners on the other hand the built-in first
evaluates the group rights, then the rights for the so-
called “rest of the world”. If you want to know more
about test, call up the corresponding documentation
with man test and/or info test.

Who’s there?

QIn which file can I find details on who has
logged on?

Dr. Linux: Basically, on every Linux system, data is
collected on the system start and the log-in activities
of the users are kept in various databanks and log
files. So there is no general answer to this question.
Two commands which are simple to use are last and
lastlog.

BEGINNERS

74 0LINUX MAGAZINE Issue 20 • 2002

a command line. You will get a multi-column table,
which is relatively simple to understand (Listing 1). In
the first column, you will see the user name (“Who is
logged in?”). Details of the terminal in use (tty,
terminal type), the host to be used for remote log-ins
(From), the date and the time (“Logged on since
when?”) and finally the total duration of the log-in
session follow. At the bottom of the table you will
find information telling you since when log-ins have
been being recorded in this file: Usually the system
captures and archives /var/log/wtmp from time to
time, so that the file does not get too big.

Just as simple and clear is the output of lastlog.
Here all the users the system has recorded are
included in the output. From the point of view of
security special users generated by the system usually
have no home directory and are not even allowed to
log in directly. This is the case, for example, with the
games user. Because he has never logged onto the
system as user, in the column headed “Latest log-in”
(Latest) there is the short but sweet comment
Never logged in.***

You can get your own information from the file
/var/log/wtmp, which stores details of successful log-
ins and log-outs by system users. But if you try to
look at this file using an editor, you will see nothing
but confusing symbols (see Figure 1).

To coax out your details from the file, enter last on

Listing 1: Sample outputs from last...
perle@maxi:~> last
news tty3 Mon Jan 7 19:04 – 19:04 (00:00)
web tty2 Mon Jan 7 19:04 still logged in
perle tty5 Mon Jan 7 18:33 – 18:35 (00:02)
perle tty1 Mon Jan 7 11:07 still logged in
trish pts/7 chekov.linux-mag Mon Jan 7 11:06 still logged in
reboot system boot 2.4.10-4GB Mon Jan 7 11:03 (08:00)
[...]
wtmp begins Wed Jan 2 01:23:54 2002

Listing 2: ...and lastlog
root tty1 Sun Dec 16 22:06:26 +0100 2001
[...]
lp **Never logged in**
games **Never logged in**
irc **Never logged in**
ftp **Never logged in**
firewall **Never logged in**
postfix **Never logged in**
web tty2 Mon Jan 7 19:04:04 +0100 2002
perle tty5 Mon Jan 7 18:33:15 +0100 2002
man **Never logged in**
[...]
cz tty4 Mon Dec 3 03:13:35 +0100 2001

Info
Patricia Jung: “Command Line Juggler”, Linux
Magazine Issue 19. Page 73 provides additional
information on shell built-ins and aliases.

Figure 1: /var/log/wtmp in an editor

