
KNOW HOW

42 LINUX MAGAZINE Issue 21 • 2002

Using cookies with PHP

COOKIE
CUTTER

Cookies are very

much maligned and

misunderstood but

they can be useful

tools in the hands of

Web developers.

David Tansley

explains exactly what

cookies are and how

you can make use of

them with PHP

Afew months ago the ITV program Pop Idol
captivated the British nation and the public
was invited to vote on who they thought was

the best singer. Votes could be registered by either
ringing a designated phone number or via the ITV
Web site. On the day of the final, when my two kids
tried to vote more than once via the Web, shouts
were heard exclaiming that: “It won’t let me vote
more than once”. “Ah,” I said, “their Web site is
either overloaded or you have been cookied.”

So what are cookies?
Cookies are very small text files that are sent from
a Web server to your browser. The browser will
then store them, usually as a cookie file. Cookies
do not harm your computer; they are a way of
storing general information about you or keeping
track on what you are doing on a Web site.
Cookies will only store information that you give
the Web site, so be careful – if you don’t want
personal information to be stored, then don’t give
it in the first place!

Let’s look at how a cookie might be used.
Suppose you visited an online record store. If you
decided to purchase a couple of records, a cookie
would be used to keep track of your choice and
how much you are spending. This cookie will
provide you with a unique customer number that
your browser will use to identify you to the Web
site. When you make a purchase, this cookie is
read and your purchase is added to a database,
with your (cookie) number as the key that
identifies you. When you wish to check out your
transactions a database will be displayed. The Web
server knows that these are your transactions
because it will have used the cookie to identify and
keep track of you.

Now you’ve got to remember, that the World
Wide Web is a stateless transaction. By that we
mean once you’ve loaded a Web page, that’s it,
the connection is broken. The Web server has no
idea who you are, which is why cookies are so
important – they keep track of your

transactions/movements within that Web site.
Cookies are also used for login screens and
personalising Web pages like at Yahoo. The
downside of cookies is that some Web servers now
use them to load up lots of unwanted advertising
banners based on a previous transaction you may
have made. Thankfully, you can disable the use of
cookies or let the browser tell you when a cookie
is being sent via your browser configuration.

Cookie ingredients
Any Web-enabled script or programming language
can utilise cookies. In this article we will
demonstrate cookie handling using the Web
scripting language PHP. PHP is a server-side
language, which means it resides on the Web
server itself. PHP has for a while supported
sessions – a much better and more robust
alternative to using cookies – but for this article
we will stick with plain cookie handling. The
principals that we are going to show you can be
used in any Web language of your choice.

The structure of a cookie is as follows:

● Value: The actual (data) contents of the cookie.
● Expiration: The length of time a cookie is valid

for.
● Path: Which directory the cookie is valid for. A

single slash means all public Web directories on
the Web server.

● Domain: The domain name the cookie is valid
for. Please note you cannot make up a domain
on your cookie, as security will prevent it from
being sent successfully. If you do not know
your domain then play it safe, leave it blank
and it will default to your domain. If you
specify a domain name – and you need to if
you’re on the Web – you can use a sort of
wildcard (a dot at the beginning of the domain
name) to match all other domains that belong
to you. For example, suppose you belong to
www.example.com, by specifying .example.com
that also would be valid for

KNOW HOW

43LINUX MAGAZINEIssue 21 • 2002

testing cookie handling it is always best to set the
browser to prompt you before accepting a cookie, as in
Figure 1. This way you are absolutely sure that you are
getting the cookie whilst testing cookie handling.

When the browser is pointed to the script in
Listing 1 and the cookie is loaded, you can see the
actual contents and structure of the cookie by
selecting cookie details, as in Figure 2. Notice that
the (value) contents part has been URL-encoded.
When we next read back the cookie PHP will take
care of the URL de-coding for us. The cookie will
be stored in your HOME directory structure inside
cookie.txt.

Reading the cookie
Now the cookie has been sent to the browser, the
next time the browser revisits we can read it. How do
we know which cookie to read, after all the browser
will probably have quite a few cookies stored? Well
for one, you can only read cookies that belong to
your domain. Secondly you may have noticed the
name we gave the cookie was “cookie_test”. This is
how we will pick the cookie up.

Before we try to read the cookie, it is best to first
make sure the cookie is present. With PHP this is
accomplished with the isset function, which tests to see
if the object is defined. If the cookie is defined then we
then display it to the browser, if the cookie is not
defined then we can throw up a nice error message
instead. Listing 2 does just that. Notice the use of braces
on both sides of the else part. Figure 3 shows the
output of the script to the browser after successfully
reading the previous cookie that was sent in Listing 1.
As a side note you can also read cookies by looking at
the CGI environment variable HTTP_COOKIE or the PHP
environment $HTTP_COOKIE_VAR.

Listing 1: Simple code to send a
cookie with PHP
<?php
setcookie(“cookie_test”,”Yum Yum, I love cookies”,time()+43200,”/”);
?>

Listing 2. Displaying the cookie
if it is present
<?php
showing a cookie
if (isset($cookie_test))
{
echo “Yum Yum, I’ve got your cookie, the contents are: $cookie_test”;

} else {
echo “No cookie found...sorry”;
}
?>

www1.example.com and www2.example.com,
and so on.

● Security: If this is set to ‘1’ then a secure
connection (SSL) can read the cookie. Leaving
the Security part blank will default to non-
secure.

When setting a cookie not all the above are
mandatory: if the Domain and Security are left blank,
PHP will assume it is not a secure cookie and the
domain will be the current one you belong to (if any).
The expiration time is determined by the number of
seconds since 01/01/1970. Don’t worry, there’s no
need to get a calculator out. By using PHP’s time
function, all you need to do is give it the time in
seconds when you want the cookie to expire. So,
time()+3600 will compute one hour from the current
time (the cookie is sent), and time()+86400 will
compute 24 hours from the current time, get it? If
you only want the cookie valid till the browser closes
down then leave the expiration part blank.

When a cookie is initially sent from the Web server
to the browser, you cannot then read that cookie until
the client revisits. Beware of this; it is the most common
mistake when learning cookies. Another common
mistake is trying to send content to the browser before
setting a cookie – this is a big no, no, as it won’t get
sent in a million years. Always send your cookie before
outputting any content to your browser. (By content we
mean any information/pictures that are displayed on
the browser.)

You may have already guessed how a Web server
could stop you from registering multiple Pop Idol votes
at a time: by simply setting a cookie with say a
expiration time of six hours. The cookie would be set
when you initially vote, then when you try and vote
again, the Web server would check to see if a cookie is
present. If it is, then they must have already voted, viola!

Making a cookie
Now we know what the cookie’s ingredients are
let’s get our hands dirty and bake one. To set a
cookie with PHP the setcookie function is used.
The format for this is:

setcookie(cookie_name, value, expire time,
path, domain, secure flag);

To set the expiration time to 12 hours, this would
be 43200, worked out as follows:

(3600 = 1 hour, thus 3600 * 12hours=43200)

The code in Listing 1 is a simple script that sends a
cookie to a browser with the contents of “Yum
Yum, I love cookies”, the cookie name is
“cookie_test”, and the expiration time is 12 hours.

All browsers have the options to either accept cookies
automatically or prompt you before accepting. When

example suppose you set a cookie with the expiration
set to say 24 hours, time()+86400. If, after a couple of
hours, you decide to delete the cookie, just replace
the plus sign with a minus, like so: time()-86400. I
personally prefer this method, as it is a sure cookie
deletion scenario. Listing 3 shows both methods of
deleting the cookie sent previously

Simple cookie-based counter
Cookies can be used for many tasks, so let’s look at
how a cookie can be used as a simple counter. The
script in Listing 4 uses cookies to continuously count
up when the browser page is refreshed, by sending
cookies with the accumulated number. Here’s how it
works. First a check is made to see if a cookie is
present, if it is then the user must have already
refreshed/visited the page, so one is added to the
variable $counter, using the piece of code
$counter++. If a cookie is not present, the user must
have just loaded the Web page for the first time, so
we set the counter to zero. The next task is to set the
cookie. The time expiration is left blank, so the
cookie will expire (go stale) when the browser closes
down. The cookie is called counter, the value of the
cookie is the current value of the variable $counter.
Finally the browser outputs a message with that
value. If the user has just loaded the page, it will
show 0, otherwise it will display the current count
based on how many refreshes the user has clicked
on. Notice that nothing is outputted to the browser
before the cookie is set.

Before we finish with PHP examples here’s one final
tip: do not leave a space between the “<?php” and
the start of line. PHP will interpret that as content to
the browser and your cookie will not work.

Conclusion
Cookies are a great way of saving state when a user
visits a Web site. They are used in validation, shopping
carts, personal greetings, in fact if a Web site knows
you, you can bet they are using cookies from
information you gave previously in a form. In this
month’s article we have shown the basics of cookies –
how to set, read and delete them – and demonstrated
the purposes of cookies. As you can see, cookies are
great – when they’re not being used to bombard us
with targeted advertisements, at least.

KNOW HOW

44 LINUX MAGAZINE Issue 21 • 2002

Deleting the Cookie
By specifying an expiration time, the cookie will go
stale (i.e. unusable) when that time has been
breached. However, you may want to delete a
cookie before the expiration has been reached. For
example, suppose a user joins a club. To save them
having to sign in all time you set a cookie that then
gets read when the user visits the club. If the cookie
is present and the cookie content passes your
validation then the user bypasses the club sign-in.
Now if the user leaves the club, we might as well
take that privilege away from the user, so we need
to delete that cookie.

Deleting cookies brings us back to actually setting
cookies. When setting cookies, it is always a good
idea to think about setting a realistic expiration time
when initially setting the cookie, this can save you a
lot of hassle in maintaining your cookies, after all we
all like low maintenance, don’t we. To delete a cookie
all you need to do is resend the cookie with the same
parameters excluding the value part. Another way of
deleting them is to set a cookie as above but with an
expiration time that has already expired, so for

Listing 3. Deleting the previous
sent cookie
<?php
deleting a cookie use only one method!

delete. With contents of cookie removed
setcookie(“cookie_test”,””,time()+43200,”/”);

delete. With a time that has expired
setcookie(“cookie_test”,””,time()-43200,”/”);

?>

Info:
PHP homepage
http://www.php.net
Konqueror homepage
http://www.konqueror.org
The Unofficial Cookie FAQ
http://www.cookiecentral.co
m/faq

Listing 4. A simple cookie-based
counter script
<?php
test to see if cookie set ?
if (isset($counter)) {
yes, then add one to counter
$counter++;
} else {
no, initialise counter
$counter=0;
}
either way set the cookie !
setcookie(“counter”,$counter,””, “/”);
echo “Example Cookie and Counter Page
“;
echo “Counter:[$counter]”;
?>

All data streams sent to the browser are URL-
encoded by changing the following:

● All spaces are converted to +
● All special characters are converted to their 2

digit HEX number preceded by a %, ie: a (
quote) “ becomes %22.

● All key/value pairs are separated by &

URL encoding:

