
PROGRAMMING

59LINUX MAGAZINEIssue 21 • 2002

Perl: Part 3

THINKING IN
LINE NOISE

The sample application given here will show how
Perl earned its monikers, the duct tape of the
Internet and the Swiss army chainsaw.

Hopefully it will also illustrate how you can replace
automations currently done with a combination of
shell, sed and awk with a small amount of Perl to
give faster, more coherent solutions.

In addition to reinforcing old ground the
example presented here also touches
upon some aspects of Perl that we
have not yet

covered; such as regular
expressions. Rather than

introduce each portion of the
language in a piecemeal month-by-

month fashion this approach enables you to start
learning the language the right way: by using it. Over
the coming months we will then focus on a more in-
depth coverage of the new topics we introduce in
this way.

The short application presented here as Example 1
is an example of a glue script: a Perl script that uses a
standard command to do a lot of its work for it;
maintaining simplicity in the Perl code, while bringing
additional functionality to the command.

Having introduced the basic elements of Perl over the past two issues,

Dean Wilson and Frank Booth now explain how to

combine many of the elements shown

previously into a complete program

that you can run and tinker with

Example 1: count_logins.pl
01 # Sample script to count the number of logins a user has.
02 # Uses the ‘who’ command to get the user details.
03
04 #Location of the external binary.
05 my $whobin = “/usr/bin/who”;
06
07 # Separates the command from its path
08 # and assigns the command name in $cmd.
09 my $cmd = (split(“/”, $whobin))[-1];
10
11 # Sanity check to ensure external dependencies are met.
12 die “No $cmd command found at ‘$whobin’\n” unless –e $whobin;
13 die “The $cmd command at ‘$whobin’ is not executable\n” unless –xU
$whobin;
14
15 my %usertally = getusers($whobin);
16
17 while (my ($user, $numlogins) = each %usertally) {
18 print “$user has $numlogins login”, $numlogins > 1 ? “s” : “”, “\n”;
19 }
20
21 sub getusers {
22 my $whobin = shift;
23 my %user;
24
25 #Open a pipe to read response in from the ‘who’ command
26 open(WHO, “$whobin |”) || die “Failed to open who: $!\n”;
27
28 # loop over the output from who, assigning the line to $_
29 while (<WHO>) {
30 next if /^\s*$/; #Skip all empty lines
31 chomp;
32 m/(\w+)\s/;
33 $user{$1}++;
34 }
35
36 close WHO;
37 return %user;
38 }

File handle refresher

PROGRAMMING

60 LINUX MAGAZINE Issue 21 • 2002

comprehensive documentation (and you do write
comprehensive documentation don’t you?) you may
be better served looking at POD, a subject we will
cover in a future column.

Line 5 starts the actual code, we assign the full
path of the external who command to $whobin. This
is done both to avoid any path problems we may
encounter if we assume the running user has a valid
path set up and to allow us to do some checking on
the state of the file at the given location.

In line 9 we try to establish the name of the binary
we are calling so that we can tailor any error
messages we emit to show which command the
problem occurred with. When writing error messages
a little extra work upfront can save hours of head
scratching once you begin to create bigger
applications. The split command takes the path and
command name we assigned to $whobin and
separates them based upon the first argument given.
We then use a negative subscript (which works in the
same way as the array subscripts in article one) to
return the last item (the –1; which means count back
one from the end) from the split, which is the
command name and assign it to $cmd.

The sanity checks in lines 12 and 13 confirm that
the file indicated by $whocmd is both present and
executable. If either of these criteria fails then the
program aborts with an error message detailing the
problem.

Line 15 is where we encounter our custom
subroutine, getusers which has its code in 21–38. We
call the getusers subroutine with the location of the
who command as its only argument and we assign its

An enhanced version of this command, which runs
continually and notifies you of any changes in the
number of logins on the system, can be found in the
/Perl directory on this month’s CD with the name
whoson.pl. This version has more functionality and
makes a good demonstration of how to apply some
of the theory we discuss in this article.

The count_logins.pl script, shown in Example 1,
uses a surprising variety of Perl functionality
considering its small size. The script is started with a
short description of its intended functionality.
Depending on whether you are coding for your own
benefit or for a more public audience you could add
more details such as a created and last modified date,
an email address for author contact and any other
short details that a user may need. For morea little

extra work
upfront can
save hours In last month’s article we dipped our toes in to

Perl’s file handling commands and showed how to
open a file for reading and writing. Due to the
large role file handles play in most programs, here
is a brief recap on opening, writing to and closing
a file handle:

open (HANDLE, ‘>afile’) || die “$Failed to U
open HANDLE: $!\n”;
print HANDLE “Hello\n”;
close HANDLE;

The example opens the file “afile” in the current
directory for output – clobbering the contents of
any existing file of that name. We then use the
common Perl idiom to test whether the open file
operation is successful. If it fails then the die
function is called, exiting the program and printing
the error message given and setting the return
code. In the string passed to the die function we

also pass $! – another of Perl’s internal variables.
When used in string context $! reports the system
error string related to the last command.

If the open was successful we carry on to the
next line and then print the line “Hello\n” to afile.
After printing the line the file is closed and the
program exits. It is possible to check the return
value of the closing of the file handle but in this
example we gain nothing from it, as there is
nothing we can check.

We then moved on and covered alternate ways
of initialising the handle to allow us different ways
of interacting with it:

* ‘<’ – Read from a file.
* ‘>’ – Over-write or create the file.
* ‘>>’ – Create a file if none exists, append to a
file if it does.

If no prefix is specified the default is ‘<’.

Introduction to IPC and piping

PROGRAMMING

61LINUX MAGAZINEIssue 21 • 2002

return value to the %usertally hash for our future
use.

At this point we will make a leap to line 21 and
have a closer look at what is happening in the
subroutine that will give us the return value. We
declare the subroutine with the sub keyword
followed by the name of the subroutine and then an
optional prototype. We will cover sub in a future
article, or the impatient can take a look at perldoc
perlsub. We then follow this with a curly brace to
show we are starting the body of the sub.

In line 22 we assign the location of the ‘who’
command that we passed in to the subroutine in to
the $whobin variable using the shift function. You
may remember the shift function from our earlier
encounter with it in article one when we used it to
remove and return to us the first element of an array.

In Perl, subroutine arguments are accessed via the
@_ array – an implicit variable and a relative of $_
– that you will be seeing more frequently from this
point on. When you pass multiple scalars (variables
with a single value and visually represented with a
‘$’) to a subroutine each call to shift returns the
next one in the array while removing it. This is one
of the methods of iterating through subroutine
arguments.

We then create the hash that is to hold the users
on the system and the number of logins they

currently have running before moving on to a variant
of the file open we saw last month. Line 26 with the
piped file open is explained in the Introduction to IPC
boxout.

One of the important design considerations for
programs that “pipe out”, have other interactions or
dependencies with external commands, or that utilise
other forms of IPC is that of blocking. When you
invoke an external command and attempt to read in
its results your program will halt until the IPC or pipe

duct
tape of

the
Internet

In the count_logins.pl script (in the main body of
the article) we open a file handle as a pipe to an
external system command. In order to understand
how this works you will need a basic understanding
of file handles, if you are unsure then please read
the Filehandle Refresher boxout before continuing.
Opening a pipe to an external command can be
considered one of the more basic forms of
Interprocess Communication. Interprocess
Communication, or IPC as you’ll often see it
referred to, is a way that multiple processes can
communicate with each other. This communication
can range from merely knowing that an event has
occurred, known as “signal handling” to sharing
the output of one process with another on the
same host, the same network or even across the
Internet.

In the example script, count_logins.pl, the pipe is
opened to the who command as shown below:

open(WHO, “$whobin |”) || die “Failed to U
open who: $!\n”;

The who command is executed and if it is successful
then its output is available for reading from the

WHO file handle in the same manner as if the
handle referred to a plain text file. This simplicity in
gathering the output of external commands is one
of the main contributors to Perl’s title of duct tape
of the Internet. Taking this premise slightly further
we can use the same syntax to set up whole
pipelines of commands external to the Perl script.
These chains eventually return the output of the last
command in the chain. This behaviour fits in so well
with the standard Unix ideal of filter chains that
many people never advance beyond this form of
IPC.

Now that we have shown how to read data in
from an external command it seems fitting to show
how easy it is to reverse this and send output from
a Perl script to an external application:

open(PAGER, “| $pager”) || die “Failed to U
open $pager: $!\n”;

If you are curious as to Perl’s other forms of IPC
then ‘perldoc perlipc’ is a good place to start and
Lincoln Stein’s Network Programming with Perl is an
excellent title that covers the subject in an unrivalled
depth.

PROGRAMMING

62 LINUX MAGAZINE

has returned the data that is to be read. If not
recognised and catered for this can have many
negative effects on your program. A common
example is the user prematurely terminating the script
from the terminal, leaving any external resources it
uses in an undermined state or interrupting the
program in the middle of a series of actions that
must either all be completed or none completed (this
is known as atomic). A common way to deal with this
in Perl on Linux is to use signal handlers to protect

critical parts of your program and allow them to exit
gracefully.

Another more advanced use of signals to help
mitigate the problems of blocking is with the alarm
function – full details of which can be found in
perldoc –f alarm, and a custom signal handler but
due to its advanced nature we will return to this at a
future point when we cover different IPC
mechanisms.

With line 29 we begin to get the data in from the
WHO handle and process it to give us our totals. We
set up a standard while loop which will iterate over
the file handle assigning the line read in to $_ until
no more data is left. This was covered in article two
if you need a refresher.
On line 30 we get our first view of a regular

expression. A regular expression (regex) is a way of
expressing a desired set of text to match using
special meta-characters. While this explanation may

seem less than enlightening regular expressions play
such a large part in Perl we will cover them in great
depth in a separate article. This regex is a simple one
and has been placed just to whet your appetite.

Breaking down the regex we have a forward slash
that indicates that anything between it and the next
un-escaped forward slash is the target we wish to
match. The ^ indicates that the regex should be
checked from the start of the string and the $
indicates the end of the string.

The \s is called a character class and represents the

Issue 21 • 2002

Linux signals and signal handlers

you can
write your

own custom
signal

handlers

Events can happen at any point while a process
runs: the operating system may terminate the
application, file handle limits can be reached or
the user may simply get tired of waiting and press
Ctrl+C.

When one of these occurs a signal is sent to
your program and it responds by taking an action
such as immediately halting execution and exiting
or rereading its configuration. To get a list of the
signals Linux supports you can type kill –l at the
command prompt.

While the default responses to signals can be
enough to ensure that the program does the
minimum of what’s required, they can also cause it
to exit in an incomplete state creating problems
such as leaving temporary files on the machine or
even just prevent it from logging the time the
program stopped.

To get around some of these limitations you can
write your own custom signal handlers to catch
and process the signals as you see fit. Overriding
signal handlers in Perl is simple, the %SIG hash
can have references to user-defined signal handlers

(subroutines by another name) that are called
when Perl receives the corresponding catch-able
signal.

$SIG{INT} = sub { print “I got killed\n”; U
exit; };

while (1) {
print “Still here\n”;
sleep 2;

}

In the above code snippet we enter an infinite
loop that simply prints the same string until you
get bored and press Ctrl+C. This then sends an INT
signal to Perl, causing Perl to stop the section of
the code it’s currently executing and call the
handler assigned to INT. While this example is
slightly contrived, if you remove the exit in the
handler the program does not terminate on a
Ctrl+C and this is one example of how you could
protect sections of the code that need to complete
from being killed while running.

PROGRAMMING

63LINUX MAGAZINEIssue 21 • 2002

different forms of whitespace (including spaces and
tabs) while the asterisk is similar to a wildcard and
means zero or more of the expression preceding it.
Putting these together we end up with code that says
“If the line from start to finish is empty or comprised
only of whitespace then do not process this line and
jump to the next.”. While this example may not be
crystal clear if you have no previous exposure to
regexs hopefully it has shown how terse yet powerful
they can be when used correctly.

Still operating on the implicit $_ we remove the
new line from the end of the string (Using the chomp
on line 31) and then we work another bit of regex
magic on line 32. This time we use a character class
that represents words. A word in this context is a
letter in the ranges of a-z or A-Z. A number in the
range 0-9 or the underscore (‘_’). We match as many
word characters as we can from the start of the line
up until the first piece of whitespace we encounter,
using \s again, as described above. The parentheses
are another regex meta-character, known as
capturing or grouping depending on the context they
are used in. They cause the value matched by the
regex expression inside them to be assigned to one of
the special regex match variables, in this case it gets
assigned to $1 as it is the first match so that we can
use the text matched outside of the regular
expression.

In line 33 we use a Perl idiom that you will see in
the wild. If we matched a new user name on line 32
it will not yet be present in the $user hash. We then
add the user to the $user hash and increment the
number of times we have seen that user by one. In
order to understand why this is successful you must
remember that when an empty string is used in
numeric context it is a zero, we then increment the
zero by one and have the correct number of logins –
one login. If the user is already in the $user hash the
++ ups by one the number of logins as expected. This

is an oft-used idiom as it reduces a four line
operation to one cleaner line of code.

We then act like responsible coders and close the
WHO handle at line 36 – even knowing that implicit
closes will occur it’s good practice to close them
manually. We then return the %user hash to line 15,
where we called the subroutine, and where the
values are assigned to %usertally and we finish the
subroutine with the closing curly brace.

Jumping back up to line 17 we iterate through
each of the key and value pairs in the hash with a
while loop and in the body of the loop print out the
user and the number of logins they had.

The last interesting example of Perl code in this
small application is at line 18. When we list the
number of logins the person had we want to say
‘dwilson had 1 login’ or ‘dwilson had 2 logins’ with
the s added to the end of the string for anything
more than a single login.

We do this by building a longer string from
composite strings and including a ternary operator.
The building of the string is achieved by passing a list
of arguments to the print function with each
argument separated with a comma. The ternary
operator (also called the trinary operator in some Perl
books) is in essence a shorthand if-then-else
statement. It is actually an expression, so it can be
added in places such as function calls where an if
statement is not permitted.

A ternary maps out like this:

condition ? then : else

$numlogins > 1 ? “s” : “”

So if $numlogins is greater than one, meaning the
condition is true, then the then part is called and an s
is added to the string. If the condition evaluates to
false the else part is called and, seeing as, in this case
we not do wish to add anything, we return an empty
string.

In closing
Now that you have seen a complete, albeit, small
example of a functional Perl script, the more abstract
concepts that were covered in the first two articles
should be better understood now. We have lightly
touched upon subroutines and regular expressions
and handed out some pointers on further reading for
those eager to move ahead before we come back to
them in the near future.

Source code
The source code for the examples used in this article
can be found on this month’s cover CD in the /Perl
directory.

another
bit of
regex
magic

