
FEATURE

26 LINUX MAGAZINE Issue 21 • 2002

Linux networking guide: Part 2

ROUTES AND
GATEWAYS

In the second part of

our simple guide to

configuring Linux

networks from the

command line, Bruce

Richardson shows us

how to configure a

Linux box as a router

Introduction
As was discussed in the first article in this series, the
minimum requirements for a computer to function as
part of a network are:

● A physical connection to the network, such as a
Network Interface Card (NIC).

● An address on the network. It’s no use being able to
talk to other computers if they can’t find a return
address to talk back to.

● A way of determining how to reach any given address.
That is to say, given an arbitrary address to connect to,
can we find it on this network, can we reach it through
this network or must we find some other route?

Items one and two were covered in the last article. This
article looks in detail at routes, routing tables and how
to manipulate them.

Before we begin
To implement the procedures outlined here you should
be able to do the following:

● Install NICs in a Linux box (covered in the previous
article).

● Perform basic configuration of network interfaces
on your distribution of choice (also covered in the
previous article).

● Compile a kernel. This is not the terrible prospect
many recently-converted Linux users seem to dread.
There are friendly menuing systems (text or GUI) to
help you and if you haven’t tried it yet you really
should learn.

Networking concepts
Configuring a Linux box as a router is a more complex
task than simply connecting it to a network. It is
necessary to explain some elements of IP networking on
Linux before giving any practical examples.

What is a subnet?
A subnet is a subdivision of a network: you might say that
a subnet is to a network what a network is to an Internet.

As the previous article explained, each IP address
contains a network number, uniquely identifying the
network on which the host may be found. A network
may be further subdivided into subnets by allocating
further bits to specify subnet numbers. A network with
address 194.206.0.0/8 could allocate the third most
significant byte to subnet numbers: this would allow for
256 subnets (each with up to 255 hosts) with addresses
194.206.0.0/24, 194.206.1.0./24 and so on.

There may be many reasons why a network may be
split into subnets, linked by switches or routers, but the
greatest benefit is that dividing your network in this way
makes the implementation of routing and firewalling
much easier.

Routes, gateways and the routing
table
When the Linux kernel is presented with an IP packet
to deliver, it needs to know the route by which the
packet should be sent if it is to reach its destination. To
do this it consults the routing table. Each entry in the
routing table lists a destination and the way to reach it.
The kernel works through the entries in sequence until
it finds a match. If there is no match, an error is
returned. The Routing Table boxout shows a sample
routing table as displayed by the route command.

The machine in question has two routes in its
table. The first route is to a subnet with address
192.168.10.0 and netmask 255.255.255.0, which is
the local network to which the computer is attached.
The entry tells us that any IP address on that subnet
can be reached through the eth0 network interface
(see the Iface column at the far right).

The second route is a default route: the special
address 0.0.0.0 with netmask 0.0.0.0 matches any
address. This entry catches any IP address that isn’t on
the local network and forwards it to the host at
192.168.10.1 (as specified by the entry in the Gateway
column) via network interface eth0. The machine at
192.168.10.1 is expected to know how to send the
packet on at least the next step in its journey and is thus
acting as a gateway to other subnets and networks.

FEATURE

27LINUX MAGAZINEIssue 21 • 2002

hardware or, as in this article, properly configured
Linux boxes.

Static versus dynamic routes
Static routes do not change unless actively
reconfigured. All the examples in this article use static
routes. Most hardware routers are, in contrast, able
to build routing tables dynamically, using established
protocols to map the networks to which they are
connected and responding automatically to network
changes. Linux boxes can emulate this behaviour but
there is not space to cover that here.

Policy routing and the IPROUTE
suite
Ordinarily, routing decisions are made solely on the
basis of an IP packet’s destination. Policy routing
allows us to set rules that route IP packets based on
other criteria, such as the source address.

To do this on Linux we use the iproute suite and a
properly configured kernel. A kernel configured for
policy routing can maintain multiple user-defined
routing tables. The IP tool from the iproute suite
allows us to manipulate those tables and to create
rules to specify which IP packets use which table.

The IP tool is a networking Swiss Army Knife. It can
be used to replace most of the common Linux
networking commands (ifconfig, route and so on)
and adds a whole range of new capabilities. In this
article it is used to perform functions beyond the
reach of the traditional tools.

Iproute packages are available in rpm and deb
format for all the main distributions and so
installation is a simple one-line (or single-click)
operation. There is not space here to describe the
suite in any detail: the examples in the section called
Building A Gateway Box should give a good
introduction to the use of the IP tool.

Routing table – as shown by the route command
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.10.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 192.168.10.1 0.0.0.0 UG 0 0 0 eth0

Debian network config file
/etc/network/interfaces –– configuration file for ifup(8), ifdown(8)
The loopback interface
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static

address 192.168.10.10
netmask 255.255.255.0
gateway 192.168.10.1

The route command
The route command (usual location /sbin/route) is
used to manipulate the routing table. If we assume
that the Linux box began with no routes at all, we
can create the routing table shown in the Routing
Table boxout with the following commands:

route add –net 192.168.10.0 netmask U

255.255.255.0 eth0
route add default gw 192.168.10.1

The second command doesn’t specify an interface
because the route command can work it out from
the route added in the first (that is, the kernel
already knows how to get to any 192.168.10.xxx
address). You can specify the interface if you wish,
however.

You must be root to manipulate the routing table
but any user may examine it (though they may have
to type the full path to the command) thus:

route –n

Which should give the same output shown in the
sidebar. Note: the –n parameter isn’t essential but
stops the route command from attempting to resolve
IP addresses into fully qualified names (which takes
longer and hides the IP address information).

How the distributions do it
On a simple network you will not normally need to
use the route command. For one thing, standard
subnet routes like the first entry in our example are
now automatically added by the kernel (any 2.2.x or
later version) when the network interface is
configured. As for default routes, on a Debian box a
gateway entry is added to the configuration details for
the associated interface (see the Debian Network
Config File boxout) and the route is created and
destroyed when that interface is brought up or down.
On a Red Hat box the same thing can be achieved by
adding an entry to /etc/sysconfig/static-routes as
shown in the Red Hat interface config script boxout.

What is a router?
All networked computers use routes and any host
may be linked to more than one network but a
router is a piece of equipment that connects different
subnets or networks together and acts as a gateway
between them, enabling hosts to on different subnets
to communicate. Routers can be proprietary

FEATURE

28 LINUX MAGAZINE Issue 21 • 2002

Building a gateway box

The rest of this article shows how to turn a Linux box
into a gateway linking several subnets on a network.

The old setup
The network used to be organised as shown in
Figure 1. There was one subnet, 192.168.10.0/24,
holding all the servers and workstations. There were
two routes to the Internet, one through a hardware
ADSL router/firewall on 192.168.10.1 and one
through a leased line whose router/firewall was on
192.168.10.2. Most user workstations were set up
to use the ADSL router as a gateway while those
servers which required Internet access and certain
developer workstations used the leased line.

There were two main problems with this network
configuration:

● 1. There is no easy way to control which hosts
go out which gateway. The ADSL connection
has been unreliable, sometimes through
problems with the line, other times because

problems with routing at the ISP. But if any
machines need to switch from one gateway to
the other they must either be visited individually
(in the case of those which are statically
configured) or wait for the change to percolate
through DHCP (for those which are dynamically
configured). The DHCP lease on this network is
three days, meaning that a change in the
configured gateway takes up to 36 hours to
percolate throughout.

● 2. It is insecure. Firstly, there is only one subnet
and so access must be allowed from the
Internet to the internal network to reach the
mail and Web servers. Secondly, having two
points of egress/entry to the network makes it
twice as vulnerable, with two sets of firewall
rules to get right but a failure in just one
causing a breach.

The new setup
The proposed new configuration is shown in Figure
2. There will be two extra subnets,
192.168.11.0/24, 192.168.12.0/24, the first leading
to the leased line and the second to the ADSL line.
The two hardware router/firewalls have been
allocated IP addresses on the new subnets
(192.168.11.2 and 192.168.12.2). The mail and
Web servers have been moved to the leased line
subnet.

The new Linux box will act as a router between
all three subnets and as a firewall shielding the
internal subnet (beyond the scope of this article). Its
configuration will include the following key points:

● It will become the sole gateway for the
192.168.10.0/24 subnet, using policy routing
rules to decide which hosts are routed out
through ADSL or leased line.

● Its interface to the internal subnet will be
assigned both 192.168.10.1 and 192.168.10.2Figure 1: How our old set-up was organised

Figure 2: How we want our new set-up to appear

FEATURE

29LINUX MAGAZINEIssue 21 • 2002

Red Hat interface config script
/etc/sysconfig/static-routes
Each line should have the format:

device args

When an interface is brought up, each

matching line
is passed to route as:

route add –args device

eth0 default gw 192.168.10.1

Debian gateway interfaces
/etc/network/interfaces –– configuration file for ifup(8), ifdown(8)
The loopback interface
auto lo
iface lo inet loopback
auto eth0
iface eth0 inet static

address 192.168.10.1
netmask 255.255.255.0

auto eth1
iface eth1 inet static

address 192.168.11.1
netmask 255.255.255.0

auto eth2
iface eth2 inet static

address 192.168.12.1
netmask 255.255.255.0

as addresses, removing the need to reconfigure
any hosts on the internal subnet.

● We will add a couple of scripts to switch the
default route between the ADSL and leased
line, so that users can quickly be routed
through the leased line if there are problems on
the ADSL.

This configuration offers several advantages over the
old one:

● It’s simpler to administer, since all routing
decisions are made at the gateway box.

● Users can be switched instantly from routing
through the ADSL line to routing through the
leased line.

● It’s much more secure, since the Internet-facing
servers have been moved into a Demilitarized
Zone (DMZ) between the Internet and the
internal subnet. Now access from the Internet
can be restricted to the DMZ, with no access
allowed from the Internet to the internal subnet.

The implementation
Prepare a Linux box with three network cards in it (a
Pentium II or equivalent with 64Mb RAM and fast
Ethernet cards will be more than sufficient). You will
need a 2.2.x or later kernel and the iproute suite.

Make sure the kernel has been compiled to be an
advanced router
(CONFIG_IP_ADVANCED_ROUTER=y) , with the
policy routing (CONFIG_IP_MULTIPLE_TABLES= y),
Netlink socket (CONFIG_NETLINK=y) and routing
messages (CONFIG_RTNETLINK=y) options. It would
also be desirable have it optimised for routing
(CONFIG_IP_ ROUTER=y). Additional options are
required for firewalling but that is beyond the scope
of this article.

Configure the network interfaces so that eth0,
eth1 and eth2 have IP addresses 192.168.10.1,
192.168.11.1 and 192.168.12.1 respectively. The
Debian Gateway Interfaces boxout shows how this
would be done on a Debian box.

Simpler steps
First we should switch on IP forwarding, so that the
box will forward packets that come in on one
interface back out on the appropriate interface:

echo 1 > /proc/sys/net/ipv4/ip_forward

The routes to each subnet should have been
configured along with their respective interfaces but
now we add a default route out through the ADSL
line:

route add default gw 192.168.12.2 eth2

At this point the routing table should look like the
Gateway Routing Table boxout.

Now we turn from the route tool to the IP tool,
adding an extra address to the eth0 interface so that
the gateway box can impersonate both of the
routers:

ip addr add 192.168.10.2/24 brd + dev eth0

Policy routing implementation
At this point we do have a functioning router. If the
cables are connected it will route from the internal
subnet to the Internet through the ADSL line (via
eth2 and to the mail and Web servers via eth1). Now
for the complicated bit where we try to add an
alternative set of routes for certain hosts.

First we add a custom routing table, leasedline, to
the rt_tables file (on a Debian system this is in
/etc/iproute2/):

FEATURE

30 LINUX MAGAZINE Issue 21 • 2002

Gateway routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.10.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
192.168.11.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
192.168.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2
0.0.0.0 192.168.12.2 0.0.0.0 UG 0 0 0 eth2

Route switching scripts
#!/bin/sh
/usr/local/bin/goleased – switches default
route to leased line
route del default gw 192.168.12.2
route add default gw 192.168.11.2
ip route flush cache
#!/bin/sh
/usr/local/bin/goadsl - switches default
route to ADSL line
route del default gw 192.168.11.2
route add default gw 192.168.12.2
ip route flush cache

We can check to see if the routes and rules have
been properly configured:

ip route show table leasedline
ip rule show

Finally, we flush the cached list of routes so that the
new routing tables are
used:

ip route flush cache

If everything worked, traffic to the Internet from the
three hosts listed above will go through the leased line,
no matter what the state of the main routing table.

Final detail
Now all we need do is add scripts that can be used
to switch the default route from the ADSL to the
leased line and vice versa. A simple example is
provided in the Route Switching Scripts boxout.
Note: these scripts do not affect the leased line
routing table.

Making it permanent
If you have all this working, it may occur to you

that most of the configuration will vanish if you
restart the machine or bring network interfaces
down. A crude way to give it permanence would be
to place the sequence of commands listed above
into a script, to be run during start-up. A more
robust solution would be to arrange it so that
routes and rules are added or deleted with their
associated interfaces. Each distribution has its own
way of achieving this and I leave it to you to
research as an educative project.

Summary
This article has shown you how routing works on
Linux, from the simple set-up of a typical
workstation to the complex configuration of a
router. Most small networks don’t need anything so
complex but the ambitious scope of this article
hopefully provides you with examples that you can
adapt to your own needs.

The next article will explain DNS, how to configure
workstations to use DNS properly and how to
configure a DNS server using BIND or some of the
smaller Open Source DNS daemons.

Info
iproute site
http://defiant.coinet.com/
iproute2/
Advanced ruting HOWTO
http://www.linuxdoc.org/
HOWTO/Adv-Routing-
HOWTO.html
Linux network
administrators guide
http://www.tldp.org/LDP/
nag2/index.html

/etc/iproute2/rt_tables
syntax: priority name
#
255 local
254 main
253 default
0 unspec
#
table added for leased line
#
200 leasedline

The new table has no routes, so we need to add
some:

ip route add 192.168.10.0/24 dev eth0 tableU
leasedline
ip route add 192.168.11.0/24 dev eth1 tableU
leasedline
ip route add 192.168.12.0/24 dev eth2 tableU
leasedline
ip route add default via 192.168.11.2 devU
eth1 table leasedline

Now we add a rule for each ip address of a host that
will use the new table:

ip rule add from 192.168.10.14 tableU
leasedline
ip rule add from 192.168.10.17 tableU
leasedline
ip rule add from 192.168.10.32 tableU
leasedline

