
PROGRAMMING

71LINUX MAGAZINEIssue 21 • 2001

XML processing with Python,
Part 1: SAX and DOM

STRUCTURAL
ANALYSIS

as events. The most important component is
the content handler, which implements
the callback functions startElement(),
endElement() and characters(). The
content handler is registered with the
SAX Parser via its setContentHandler()
method. For example, for every opening

Table 1: SAX ContentHandler
class methods

Method Description
startDocument() Call for starting parser
endDocument() Call for terminating parser
startElement(name,attrs) Call for opening tag <name>
endElement(name) Call for closing tag </name>
characters(content) Call for text

Over the last few years XML has developed
into a platform-independent standard
exchange format for data and documents.

Apart from the actual XML standard there are
other standards, such as XSLT and XPATH, which
relate to converting and accessing XML
documents. Python and XML could therefore both
be described as middleware – reason enough to
have a closer look at the possibilities of XML
processing with Python.

XML modules in Python
The standard distributions of Python 2.1 and 2.2
already contain the most important modules for
XML processing. However, these do not cover all
the functionalities that we require for the purposes
of this article. The PyXML package provides a
much greater functionality range. PyXML can be
installed either as an rpm or directly from the
sources using Distutils (python setup.py install).
Binaries for Windows are also available for
download.

Objectives
In the following example we will be using the XML
file pythonbooks.xml. This file contains data for
three Python books, which we will convert into a
simple HTML table using various XML techniques.
To simplify matters, a “book” (<book> tag)
consists only of its title, author and publisher
(Listing 1).

Keep it simple with SAX
SAX stands for “Simple API for XML”. A SAX
parser is essentially based on a callback API. This
means a number of functions, which the
application has registered for a certain event type,
are called during the process of parsing an XML
document. Such events typically include opening
and closing XML tags, text and entities, but also
parser errors, which are reported to the application

Listing 1:
pythonbooks.xml
<?xml version=”1.0” encoding=”utf-8” ?>
<pythonbooks>

<book id=”1”>
<title>Programming Python</title>
<author>Mark Lutz</author>
<publisher>O’Reilley</publisher>

</book>
<book id=”2”>

<title>Python & XML</title>
<author>C. Jones & F. Drake,

Jr.</author>
<publisher>O’Reilley</publisher>

</book>
<book id=”3”>

<title>Python Essential Reference
</title>

<author>Guido van Rossum & David
Beazley</author>

<publisher>New Riders</publisher>
</book>

</pythonbooks>

XML and Python make

a great team. With

Python it is easy to

control SAX as well as

DOM parsers, which

allow you to analyse

structured documents.

Andreas Jung explains

how

PROGRAMMING

72 LINUX MAGAZINE Issue 21 • 2001

tag it calls startElement() with the tag’s name and
attribute list.

Listing 2 (sax.py) shows the implementation of
the converter using the SAX parser. The actual
application logic is contained within the individual
if-then-else blocks. Table 1 shows the most
important functions of the ContentHandler class.

DOM: A few sizes up
The Document Object Model (DOM) is defined by a

number of standards set by the World Wide
Web Consortium (W3C) and covers all
aspects of XML processing. Unlike SAX,

when the DOM parser parses an XML
document it creates an internal hierarchical tree
structure which the application can access using
the DOM API. Figure 1 shows the internal structure

for the earlier XML example. There are various
types of nodes on the tree (see Table 2)
representing, for example, XML tags
(ELEMENT_NODE) or text elements (TEXT_NODE)
between XML tags. All nodes have a number of
attributes that can be used to navigate a DOM tree
(see Table 3).

The difference to SAX becomes obvious in the
DOM implementation of our example (Listing 3).
With DOM the application determines the
processing sequence (with SAX the application
reacts to the parser events). The simplest way of
transferring an XML document to a DOM tree is
via the FromXmlStream() method, which reads an
XML document from an input stream, parses it and
returns the top node of the DOM tree.

In our example we are first of all looking for all
element nodes representing the <book> tag. The
getElementsByTagName() method searches for all
element nodes representing the tag in question.
Once you have located these nodes you can
retrieve the nodes for <author>, <title> and
<publisher> in the same way and then extract the
text contents of the corresponding tags. The

from xml.sax import make_parser
from xml.sax.handler import U
ContentHandler

class BookHandler(ContentHandler):

book = {}
inside_tag = 0
data = “”

def startElement(self, el, U
attr):

if el == “pythonbooks”:
print “<table>”
print “<tr>”
print U

“<th>Author(s)</th><th>Title</thU
><th>Publisher</th>”

print “</tr>”

elif el == “book”: U
self.book = {}

elif el in U
[“author”,”publisher”,”title”]:

self.inside_tag = 1

def endElement(self, el):

if el == “book”:
print “<tr>”
print U

“<td>%s</td><td>%s</td><td>%s</tdU
>” % \

(self.book[‘author’], U
self.book[‘title’], U
self.book[‘publisher’])

print “<tr>”

elif el in U
[“author”,”publisher”,”title”]:

self.book[el] = U
self.data

self.data = ‘’
self.inside_tag = 0

def characters(self, chars):
if self.inside_tag:

self.data+=chars

Content handler
bh = BookHandler()

Instantiate parser
parser = make_parser()

Register content handler
parser.setContentHandler(bh)

Parse XML file
fp = open(‘pythonbooks.xml’,’r’)
parser.parse(fp)

Listing 2: sax.py

Figure 1: Internal XML structure for the example “Pythonbooks”.

Listing 3: dom.py
from xml.dom.ext.reader.Sax2 import U
FromXmlStream

def getText(nodelist):
lst = []

for node in nodelist:
if node.nodeType == node.TEXT_NODE:

lst.append(node.data)

return ‘’.join(lst)

def td(txt):
print “<td>%s</td>” % txt,

fp = open(‘pythonbooks.xml’,’r’)
dom = FromXmlStream(fp)

print “<table>”
print “<tr>”
print “<th>Author(en)</th><th>Title</th><th>U
Publisher</th>”
print “</tr>”

for book in dom.getElementsByTagName(‘book’):
print “<tr>”

for item in [‘author’,’title’,’publisher’]:

node = U
book.getElementsByTagName(item)[0]

td(getText(node.childNodes))

print “\n</tr>”

print “</table>”

PROGRAMMING

73LINUX MAGAZINEIssue 21 • 2001

function getText() steps through every child node
and tests whether it is a text node. If it is, the text
is extracted.

Modifying a DOM tree
The great advantage of DOM is that its tree
structure can be reorganised dynamically. dom1.py
in Listing 4 shows how simple it is to add a new
<book> element. The corresponding element
nodes are created using createElement(tagname),
while text nodes are created with
createTextNode(text). The crucial point is the
integration of the nodes into the tree structure. In
our example the text nodes are appended to the
element nodes using appendChild(). The element
nodes for title, author and publisher are in turn
appended as descendants of the newly created
book node. In the last step the new “book” with
all its child nodes is appended to the existing tree.
We are using the PrettyPrint() utility to output the
extended tree (see Listing 5 pythonbook1.xml).

Spoilt for choice
Whether you use SAX or DOM very much depends

Table 2: The most important
DOM node types

Node type Description
ELEMENT_NODE element nodes (XML tag)
ATTRIBUTE_NODE attribute nodes (XML tag attributes)
TEXT_NODE text nodes (text within XML tags)
CDATA_SECTION_NODE nodes for CDATA elements
ENTITY_NODE XML entities (e.g. &)
ENTITY_REFERENCE_NODE XML entity references (e. g. ®)
COMMENT_NODE XML comments
DOCUMENT_NODE document nodes
DOCUMENT_TYPE_NODE document type definitions
DOCUMENT_FRAGMENT_NODE document fragments
NOTATION_NODE notation nodes

Table 3: Attributes and methods
for all DOM nodes

Attribute/method Description
attributes node attributes
childNodes lists all child nodes
firstChild the first child node
lastChild the last child node
nodeType node type (see Table 2)
parentNode the node directly above in the DOM tree
nextSibling/previousSibling right/left sibling node
removeChild(childNode) removes a child node
appendChild(newChild) adds a new child node
insertBefore(newChild,refChild) Inserts a new node before another child node

Table 4: ELEMENT_NODE API
Attribute/method Description
tagName name of the XML tag
getAttribute(name) retrieves the value of an attribute for the node
getElementsByTagName(name) retrieves a list of all descendant element nodes

of the same name
setAttribute(attr, val) adds a new attribute to the node
removeAttribute(attr) removes an attribute from the node

Table 5: TEXT_NODE API
Attribute Description
data string representation of the text
length length of the text

Listing 4: dom1.py
from xml.dom.ext.reader.Sax2 import U
FromXmlStream
from xml.dom.ext import PrettyPrint

fp = open(‘pythonbooks.xml’,’r’)
dom = FromXmlStream(fp)

find ‘pythonbooks’ node
top_nodelist = U
dom.getElementsByTagName(‘pythonbooks’)

new ‘book’ node
new_book = dom.createElement(‘book’)

all child nodes for ‘book’
new_author = dom.createElement(‘author’)
new_author.appendChild(U
dom.createTextNode(‘Andreas Jung’))

new_title = dom.createElement(‘title’)
new_title.appendChild(dom.createTextNode(‘XMLU
processing with Python’))

new_publisher = dom.createElement(‘publisher’)
new_publisher.appendChild(U
dom.createTextNode(‘Linux Magazine’))

link nodes
new_book.setAttribute(‘id’, ‘4’)
new_book.appendChild(new_author)
new_book.appendChild(new_title)
new_book.appendChild(new_publisher)

and attach new book to book DOM
top_nodelist[0].appendChild(new_book)

PrettyPrint(dom)

Table 6: SAX Parser vs. DOM Parser
SAX DOM
+ fast + modification of XML documents possible
+ memory efficient + flexible navigation
– no modification of XML
documents possible – not suitable for very large XML documents

– no navigation possible within
the XML document – whole document in memory

PROGRAMMING

74 LINUX MAGAZINE Issue 21 • 2001

on the specific requirements in each case. SAX
impresses with its speed and simplicity. More
complex applications would suggest the use of
DOM if they involve multiple access to many parts
of an XML document or changes to the
document’s structure. The most important
advantages and disadvantages are compared in
Table 5. In part 2 of this article we will take a
closer look at the use of XPath and XSLT under
Python.

Listing 5:
pythonbook1.xml
<?xml version=’1.0’ encoding=’UTF-8’?>
<!DOCTYPE pythonbooks>
<pythonbooks>

<book id=’1’>
<title>Programming Python</title>
<author>Mark Lutz</author>
<publisher>O’Reilley</publisher>

</book>
..
..

<book id=’4’>
<author>Andreas Jung</author>
<title>XML processing with Python</title>
<publisher>Linux Magazine</publisher>

</book>
</pythonbooks>

Info
Python XML: http://pyxml.sourceforge.net
C. A. Jones and F. L. Drake, Jr, Python & XML
(O’Reilly, 2002)

The author
Andreas Jung lives near
Washington D.C. and
works for Zope
Corporation as part of the
Zope core team. Email:
andreas@andreas-jung.com

