
KNOW HOW

32 LINUX MAGAZINE Issue 21 • 2002

diald

DIAL ‘D’ FOR
DAEMON

mode ppp
device /dev/ttyS0
speed 57600
modem
lock
crtscts
authsimple /etc/diald.auth
tcpport 1020

connect “chat ‘’ ATZ OK
ATDT08001234567 CONNECT”
defaultroute
dynamic
local 192.168.0.1
remote 192.168.0.2
include
/usr/lib/diald/standard.filter

/etc/diald.conf

The original aim of

diald was to bring up

and take down a

dialup link to the

Internet on demand.

As Robert Morris

explains this is just

the start of what

diald has to offer

Adial on demand Internet link works very well
over ISDN (although it does work on a
traditional modem link too), with the advent

of unmetered Internet accounts. It is ideally suited to
home network or small office applications and diald
provides an Open Source alternative to the more
expensive dedicated ISDN routers.

Functionality
diald’s functionality can be summed up as a daemon
that controls and monitors a non-full-time IP
connection. This functionality consists of three elements
– connecting and disconnecting on demand – allowing
manual control (both locally and remotely), and
providing monitoring of the status of the connection.

The on demand functionality is implemented with a
proxy interface, using the Linux ethertap device. This is
a virtual network interface, which gives any packets
routed to it to a userland process – diald in this case.
This device is set up just like any other network
interface – and in the normal configuration of using
diald to manage a link to the Internet, the machine’s
default route would point to the proxy interface. Thus
any traffic destined for the “outside world” is handed
over to diald. When diald receives a packet and
“triggers” (i.e. decides to bring the link up), it removes
the proxy interface and then runs pppd to bring up the
real interface. The routing is adjusted automatically, and
the trigger packet fed back to the kernel, which then
routes it in the normal way. diald then monitors the
ppp device and, when it sees it is idle, kills pppd and
reinstates the proxy device ready for the next trigger.

Simple local control of diald can be achieved using
signals. The two most useful are SIGUSR1, which tells
diald to immediately bring the link up, and SIGINT,
which immediately takes the link down (although
leaving diald running). These can be useful for
implementing regular timed connections (such as for
mail polls) from cron, for example.

diald also has a more complex command interface,
which is available locally through a named pipe, and
remotely using a TCP port (or of course locally by
connecting to localhost). Authentication must be
performed before any control commands are
permitted. The named pipe and TCP port interfaces are
not enabled unless the applicable commands are
specified in your diald configuration file. Once
authenticated, a number of commands can be issued
to control the link, for example: up to bring the link
up; down to take the link down; force to bring the link
up and force it to remain up until unforce is specified;
and block to bring the link down and block connection
attempts until unblock is specified. The command set is
documented in the diald-control manpage.

The TCP port also provides monitoring of the link
status, including whether demand mode is enabled
or disabled, or the connection is forced or blocked.
Full details of this are in the diald-monitor manpage. 

Configuration
diald is available in both traditional .tar.gz and rpm
archives from http://diald.sourceforge.net. At the time
of going to press, the latest version is 1.0.

In most installations you’ll want to ensure that
diald is started at boot up. If you’ve installed from
source then you may have to manually add a line to a
startup file such as /etc/rc.local

You should recognise some of these commands
from the pppd options file – in fact the commands
relating to the modem (device, speed, modem, lock,
crtscts) and chat script (connect) behave in exactly the
same way. The reason they’re specified here is that
diald speaks to the modem itself, and runs the chat
script (as specified by connect) prior to handing
control over to pppd. Therefore you should not
specify the modem and chat script commands in



The author
Robert Morris is a freelance
Linux professional, and a
contributor to the diald
project. He can be
contacted at: rob@r-
morris.co.uk

KNOW HOW

33LINUX MAGAZINEIssue 21 • 2002

Pitfalls
Using diald has its downsides. These relate to dial on
demand solutions in general. If you’re using an
ordinary dialup account with dynamic address
allocation, it can be annoying if diald takes the link
down on you, and brings it back up, causing your
address to change – this breaks any open
connections in ssh, FTP and so on. HTTP and POP
however (which is what most desktop users will be
using) don’t keep TCP connections open once the
data is transferred, so they work just fine.

Secondly, if you’re using a modem with diald to
provide on demand Internet access to Windows clients
(a common arrangement in a small business
installation), you may find that, because the clients are
not aware that the connection is dialup, they time out
whilst waiting for the modem to negotiate. This can be
frustrating for users. With ISDN, where the connection
time is only a second or so, diald works quite nicely.

Finally, be careful if you’re using an ordinary 0845
account – diald may trigger when you don’t want it
to. Whether it be a mis-configured daemon that tries
to connect to an external IP address in the middle of
the night, or an anti-virus utility on a user’s desktop
machine that tries to download an update from its
Web site every time it is started up.

Other applications
diald is useful in other applications too. When mode
dev is specified in the configuration, diald effectively
hands control of bringing the connection up and
down to scripts that you specify. In this way diald can
be used to monitor and control any type of link
whatsoever. For example, it could be used as a front-
end to a VPN tunnel – creating the tunnel only as
traffic arrives and destroying it afterwards.

Another alternative application is using diald to
manage a backup Internet connection, to be
activated on failure of the primary link (ADSL in this
case, or leased line etc). diald was configured to
connect to a normal Internet dialup account, but
with demand mode disabled and no default route
(since the default route is the ADSL line). A small
Windows applet was provided that sits in the bottom
right-hand corner of the users’ desktops, which they
could use to activate the dialup connection in the
event that their ADSL line stopped working.

If you’ve got any type of link that you want to either
bring up and take down transparently, or let users
control from their desktops, then take a look at diald.

lock
user rob
remotename internet
noauth

/etc/ppp/options 
/etc/ppp/options when pppd is being called by diald.

The remaining commands configure the TCP port
and authentication for controlling diald, set the
default route to point to diald, and use dynamic
addressing. diald needs the local and remote
commands when dynamic addressing is used – these
specify temporary IP addresses for diald to use for its
proxy interface, since the real addresses are only
established after the link has been brought up.

Finally, standard.filter is included – this line is
essential, because standard.filter contains all the rules
specifying what types of packets diald will trigger on
or ignore, and how long the link will be initially
brought up for, etc.
This is a minimal ppp config, since many of the usual
pppd commands are dealt with by diald instead.
Obviously you would need an entry in pap-secrets or
chap-secrets to specify the secret for the user and
remotename combination you’ve specified here.

To use the TCP port for anything other than
monitoring, you need to authenticate to diald. Two
authentication schemes are supported – “simple”,
and PAM. The simple scheme is meant for
applications where all the clients are trusted. If you
use it, you should make very sure that your TCP port
is firewalled from the outside world and only open to
hosts on your local network. You specify an auth file
with the authsimple command, and this file should
contain one or more lines in the following format (my
/etc/diald.auth given as an example):

rob up,down,force,block

Here, the user “rob” is authorised to issue the
commands shown. Once connected to the TCP port,
you need only send auth simple rob and then you
may proceed to send other commands. No password
etc, is required (use PAM authentication for this).

If you’re using the rpm, create a file in
/etc/sysconfig/network-scripts for each copy of diald
you want to start, with the prefix dialdcfg-. If you
only want a single instance of diald, you can simply
do a touch /etc/sysconfig/network-scripts/dialdcfg-
internet, and place all your configuration in
diald.conf.

You can set up multiple instances of diald, for
example I have one instance which connects to the
Internet and another to connect to the office dial-
in service. To run multiple instances, you create
one dialdcfg file for each, and put a
“DIALDOPTIONS=” line in each. I like to put
connection-specific configuration in config files
under /etc/diald, and then simply put an “include”
command in the DIALDOPTIONS line, to keep the
configuration easy to read. Obivously, make sure
only one instance has the defaultroute command.
You can use addroute to specify a script to do your
own routing.



KNOW HOW

34 LINUX MAGAZINE Issue 21 • 2002


