
KNOW HOW

38 LINUX MAGAZINE Issue 22 • 2002

Linux networking guide: Part 3

THE DOMAIN
NAME SYSTEM

Table 1: DNS Record Types
Type Description
SOA Start Of Authority record. If a name server has an SOA record for a

domain then it is an authoratitive server for that domain.
A Address record. Associates a name with an address. An address may

have multiple A records, each associating it with a different name.
CNAME Alias record. Gives an alternate name for a host that already has an

A record. NS, MX and PTR records may not point to CNAME
records and some people avoid all use of CNAMES, saying they
make a mess of DNS.

NS Identifies a host as a name server for a domain.
MX Identifies a host as a mail server that will accept mail for the domain.
PTR Pointer records are used to map addresses to names, the inverse of

A records. Their use is explained further on in this section. The
name in a PTR record must have an associated A record, not a
CNAME record.

In this, the third

installment of our

simple guide to

configuring Linux

networks from the

command line, Bruce

Richardson shows us

how to configure

DNS on both client

and server

Introduction
The examples in the first two articles in this series
used IP addresses exclusively to identify networks,
subnets and hosts. But while an IP address is all a
computer needs, humans work better with names.

Every so often, on a newsgroup or mailing list,
some newcomer to Internet technologies will
suggest that the system of IP addresses should be
entirely replaced by one based on names. This is not
practical: an IP address only requires four bytes to
store it (IPv4 addresses, anyway), whereas a text
string requires at least one byte for each character.
Since each IP packet contains the address of both its
source and its destination, this would add quite an
overhead to TCP/IP networks.

What is needed, then, is a mechanism that
allows humans to assign meaningful names to
hosts on the network and enables computers to
translate – to resolve – these names into IP
addresses. That is the subject of this article. This
article will show you how the Domain Name System
is used to organise TCP/IP networks, how to
configure a computer running Linux to use DNS
and how to configure a DNS server on Linux.

An overview of DNS
Internet domains are organised into a top-down tree-
structure. At the very top is the root domain. Beneath
that are the Top Level Domains, the generic TLDs like
.com, .net etc and the geographical TLDs like .uk, .nz
and so on. Each of those domains is further
subdivided and so on. Domains further down the tree
are considered subdomains of the upper domains, so
the debian.org domain is within the .org domain and
the uk.debian.org domain is within both the
debian.org and .org domains and they are all
subdomains of the root domain.

Names
A Fully Qualified Domain Name (FQDN) is constructed
by taking the name of a host or domain and adding
to it the names of all the containing domains, using
“.” as a separator. So ftp.uk.debian.org is the FQDN
of the host named ftp that resides within the
uk.debian.org domain. ftp is the unqaulified name,
referred to in this article as the short name.

An important point to remember is that the root
domain is itself represented by “.”. So the FQDN for
the ftp host is actually ftp.uk.debian.org.. Almost all
applications will add the final “.” for themselves as
long as the rightmost domain matches the name of a
TLD. This is not the case with name servers, however.
When configuring a name server it is important
always to include the final “.” or the daemon will
attempt to fully qualify the name by appending the
FQDN of the local domain.

Name servers
For each domain there must be a name server (a
minimum of two, for Internet domains) which can
give authorative answers to queries about names
within the domain. A name server may be
authorative for an entire domain including all its
subdomains or it may delegate responsibility for a
subdomain to another name server.

The area within a domain that the name server
does not delegate is called a zone. Name servers can
be authoritative for multiple domains and so have
many zones.

KNOW HOW

39LINUX MAGAZINEIssue 22 • 2002

Name servers maintain databases of information
about their domains. Each record in the database
holds information of a specific type (see Table 1).

Masters and slaves
Configuring multiple name servers for a domain
provides redundancy and eases the load on each
server. To ease the burden of administration, name
servers can be configured as slave servers, getting
their data from a master server in a regular process
called a zone update.

Root name servers
The root name servers are authoritative for the root
domain (and in most cases for the generic Top Level
Domains as well). Each chain of delegation starts with
them and so they are the ultimate source of the
answers to all DNS queries.

Query resolution
DNS name servers accept two kinds of queries: recursive
and iterative. In a recursive query, the name server
searches the DNS heirarchy until it finds an answer. In an
iterative query the name server simply gives the best
answer it knows. This is best illustrated by example.

A host in the example.org domain wants to know
the address of www.linux.org.uk. It sends a recursive
query to the local name server, ns0.example.org. ns0
sends an iterative query to one of the root servers,
which refers it to ns.uu.net, a name server
authoritative for the uk domain. ns0 then sends an
iterative query to ns.uu.net. ns.uu.net refers ns0 to
ns1.nic.uk, which is authoritative for org.uk.
ns1.org.uk refers ns0 to tallyho.bc.nu and since
tallyho is one of the name servers that is authoritative
for the linux.org.uk domain, it is able to give the
address of www.linux.org.uk. ns0 returns the answer
to the host that made the original query.

Caching
In the example above, ns0 doesn’t throw away the
answer to the query. Instead, it keeps it in a cache for
a period of time. If it is asked the same query within
that period it can give the answer without having to
refer onwards.

Servers answering iterative answers may also use
their cache, so ns.uu.net will also be able to give the
address of www.linux.org.uk for a while. Caching
thus eases the burden on the DNS system in general
and top level name servers in particular.

If the actual details for www.linux.org.uk change,
those name servers which have the old details in their
caches will be serving up incorrect answers. For this
reason, the SOA record of each name server includes
settings which indicate how long other name servers
should cache its replies. Even so, the downside to
caching is that changes to your DNS set-up will take
a while to propagate throughout the Internet.

Technicalities
The standard port number for DNS queries is 53.
Queries are normally carried out over UDP, though
TCP may be used if the data involved is too big to fit
into a UDP datagram.

Mapping addresses to names
Sometimes you want to find out what name is
associated with an address. For this a special domain
was created, the in-addr.arpa domain. Address-to-
name queries are solved by looking within that
domain for PTR records which list the name matching
an address. PTR records are constructed by reversing
the IP address and appending ip-addr.arpa, so to find
the name associated with the address
195.92.249.252 you would do a DNS query for
252.249.92.195.in-addr.arpa. The inversion of the
address is done because DNS places the most
significant information to the right. This allows the
query to go first to the namserver authorative for in-
addr.arpa, then to the nameserver for 195.in-
addr.arpa and so on.

An example network
The rest of this article will use as the basis of its
examples the internal network of an imaginary
company. It is a small organisation whose public
domain is managed by its ISP. All of its hosts are on a
private, internal network behind a NAT-ed firewall
and are not visible to the Internet, so the local
domain is called “internal”. This allows a simpler
example (only one name server, no slaves).

Configuring the resolver
Unix systems come with a library that is used to
resolve host names, called the resolver. (Some
applications, e.g. Netscape Navigator, use their own
resolvers. The Netscape one is particularly brain-
dead.) The Linux resolver library is called Resolv+ and

Table 2: The Internal Domain
Hostname Address Description
gateway 192.168.10.1 Gateway to the Internet, runs firewall and NAT.
Alpha 192.168.10.2 File server.
Oddjob 192.168.10.3 Used for a variety of tasks including backups

and printing
mailbox 192.168.10.4 The internal IMAP mailstore.
Squid N/A This used to be a separate box acting as HTTP

proxy for the workstations. That application has
now been moved onto gateway. Making squid
an alias for gateway allowed this to happen
without reconfiguring any other applications or
workstations.

ns 192.168.10.254 Nameserver. Also runs DHCP.
All the other computers on the network are assigned addresses by the DHCP
server on ns.

KNOW HOW

40 LINUX MAGAZINE Issue 22 • 2002

is an enhanced version of the library from BIND, the
Berkely DNS server application. To set up
a Linux box to make proper use of DNS, you edit the
resolver’s config files.

Naming your computer
This isn’t, in fact, directly associated with the resolver,
but many of the networkworking applications on a
Linux system need to associate a primary name with
the computer they run on. To do this dynamically, use
the hostname command:

hostname oddjob

This won’t survive a reboot, so we also want to
record it in a config file for the initscripts to find find
and configure. With some distributions (e.g. Debian),
the name is simply written to /etc/hostname. On Red
Hat you need to edit the HOSTNAME line in
/etc/sysconfig/networks.

The resolver config files
Back in the early days of the Arpanet, before there
was such a thing as DNS, each computer on the
network kept a local copy of a file called hosts.txt,
which they downloaded via ftp from the Network
Information Centre at regular intervals. This system
broke down as the network grew but the /etc/hosts
file is a relic from that time.

Each entry in the hosts file lists an IP address,
the name associated with it and any aliases, as in
this example:

127.0.0.1 localhost
192.168.10.1 gateway.internal gateway squid
192.168.10.2 alpha.internal alpha
192.168.10.3 oddjob.internal oddjob
192.168.10.4 mailbox.internal mailbox
192.168.10.254 ns.internal ns

Adding entries to /etc/hosts allows the resolver to
resolve names without consulting a DNS server.
Copying the above example to all the hosts on the
network would eliminate the need for a local name
server. The administrator of this network, though,
prefers the centralisation advantages of DNS, so alpha’s
hosts file is simpler:

127.0.0.1 localhost
192.168.10.2 alpha.internal alpha

The file /etc/resolv.conf can can hold various entries that
define the behaviour of the resolver, of which the most
commonly used are:

● nameserver – Add a nameserver entry for each DNS
server that you want the computer to consult. Only
one server is needed but adding extra ones gives the
computer options if the first one is busy.

● domain – Names the local domain. If given a short
name (e.g “beta”), the resolver will attempt to
resolve it within this domain (that is, it will combine
the shortname with the domain name to make a
FQDN and then try to resolve that).

● search – Defines a list of domains against which the
computer should attempt to resolve short names,
overriding the default which is just to search the
local domain.

Here is alpha’s resolv.conf file:

/etc/resolv.conf
domain internal
nameserver 192.168.10.254

If this file is not present then the resolver looks for a
nameserver on 127.0.0.1, deduces the local domain
from the hostname and its matching line in /etc/hosts
and has a search list consisting of the local domain only.

The file /etc/host.conf can take options which
define the general behaviour of the resolver, as
opposed to the more specific options in resolv.conf. If
it is absent, sensible defaults are used. Here is a
typical configuration:

/etc/host.conf
order hosts,bind
multi on

The first entry tells the resolver to consult /etc/hosts

/etc/named.conf
options {

directory “/var/cache/bind”;
};

zone “.” {
type hint “/etc/bind/db.root”;
file “/etc/bind/db.root”;

};

zone “internal” {
type master;
file “db.internal”;

};

zone “0.0.127.in-addr.arpa” {
type master
file “db.root”

};

zone “10.168.192.in-addr.arpa” {
type master;
file “db.10.168.192”;

};

Main BIND config file

KNOW HOW

41LINUX MAGAZINEIssue 22 • 2002

before trying any nameservers. The second tells the
resolver that if it finds multiple addresses for a given
name it should return them all, rather than just the first.

So far, so good
If you have followed all this, you now know how to
configure a typical Linux box to resolve names properly.
Obviously, if you are setting up DNS for the first time
then you should configure the DNS server before
referencing it from any other machines.

The Berkely Internet
Name Daemon
BIND is the most commonly used DNS server in the
world and so the one I have chosen for this example.
Specifically, I use BIND 8. BIND 9 is a recent major
rewrite which is still turning up significant bugs and has
not yet supplanted 8.x as the most popular version.

You can get the source code from the Internet
Software Consortium’s Web site or FTP site (see the Info
boxout). I recommend installing the BIND package that
comes with your distribution, though.

The main config file
BIND expects to find its main configuration file in
/etc/named.conf, though you can put it somewhere
else and pass an appropriate command line option. The
format for named.conf is extremely simple, as can be
seen in the config file for ns.internal, listed in the Main
BIND config file boxout. The basic pattern is of a series
of blocks, bounded by braces.

The first block contains the global options. In this
example there is just one option, which sets the default
directory to be /var/cache/named. Any file that doesn’t
have an explicitly set location will be looked for there.

The second block tells BIND that the root hints file is
in /etc/bind/db.root.
This file contains a list of all the root name servers and
their addresses and should be kept up to date for BIND
to function properly. A simple way to do this is to query
a reliable name server, like this:

dig @reliable.name.server . ns > root.hints

Then copy that to wherever you keep your hints file
and restart the daemon.

Each block after that simply names a zone for which
this name server is authoritative, states that this is a
master (rather than slave) server for that zone and
names the file containing the zone’s details. Since no
path is given for the files, they should be placed in
/var/cache/named.

At this point, if you looked carefully at the zones
listed, you might ask “Why a reverse-mapping zone for
the loopback interface?”. The simple answer is that
your name server will ocassionally be asked to perform
a reverse look-up on the loopback address, so this
covers it.

The data files
Next we must create the data files for each zone.
The file for the main internal domain is shown in the
BIND db file for internal domain boxout. Please note
that all FQDNS end with “.” – do not forget this.

First we have the SOA record (the IN SOA
identifies it as an Internet Start Of Authority
record). It begins with the name of the domain,
“internal.”. Then comes the name of the primary
name server, followed by the email address of the
main email contact (with the “@” replaced by “.”).
Finally there is a block of settings. These mostly
relate to slave servers, which we shall skip. The TTL
setting has a broader import, though, as it is
returned with each query response. It tells the
querying host how long it can reasonably cache
the response before checking back. A TTL of one
day is very common.

Next comes an NS record identifying ns as a
nameserver for the domain, followed by A records
for each named host on the network. Finally there
is a CNAME record making squid.internal an alias
for gateway.internal.

Starting and maintenance
Now all you need to do is start the daemon. The
daemon itself is called named. If you have moved
the config file you will need to pass it an option to
tell it where:

/usr/sbin/named –b /etc/bind/named.conf

And that’s it: not the intimidating process you may
have heard it was. Just be sure to keep your root
hints file up to date. Each time you update the data
files, restart the daemon or send it a SIGHUP signal.

internal. IN SOA ns.internal. postmaster.example.org.uk. (
1 ; Serial
10800 ; Refresh after 3 hours (10800 seconds)
3600 ; Retry after 1 hour
604800 ; Expire after 1 week
86400) ; Minimum TTL is 1 day

internal. IN NS ns.internal.

; Addresses
localhost.internal. IN A 127.0.0.1
gateway.internal. IN A 192.168.10.1
alpha.internal. IN A 192.168.10.2
oddjob.internal. IN A 192.168.10.3
mailbox.internal. IN A 192.168.10.4
ns.internal. IN A 192.168.10.254

; Aliases
squid.internal. IN CNAME gateway.internal.

BIND db file for internal domain

Info
ISC Web site
http://www.isc.org/
BIND FTP download
ftp://ftp.isc.org/isc/bind
/src/cur/bind-8/
djbdns Web site
http://cr.yp.to/djbdns.html/

