
BEGINNERS

74 LINUX MAGAZINE Issue 22 • 2002

mount and unmount
Data devices are
integrated in the Linux
file tree with the root-
reserved mount
command. Before you
can remove a mounted
CD or diskette from the
drive, an unmount
command is vital. In the
file /etc/fstab the system
administrator can
stipulate that
unprivileged users have
the right to mount and
unmount certain data
devices such as CD-
ROMs, or, more
importantly, refusing
them access. The same
is true for hard disk
partitions, which can
escape access under
Linux.

Unix systems are not

for the faint-hearted,

as the world of

processes is

swarming with

zombies and

daemons. Marianne

Wacholz takes us on

a trip into the crypts

of Linux

Dr. Linux

EXORCISE YOUR
DAEMONS

Dr. Linux
Complicated organisms, which is just what Linux
systems are, have some little complaints all of
their own. Dr. Linux observes the patients in Linux
newsgroups, issues prescriptions here for the
latest kernel problems and proposes alternative
healing methods.

which a Unix system describes its devices, having
spent years learning those Windows drive letters, you
can quickly look it up with the command mount.
mount without further details lists all currently
mounted drives, obviously including the CD which
refuses to allow itself to be unmounted:

perle@maxi:~> mount
/dev/hda7 on / type ext3 (rw)
[...]
/dev/hdb on /media/cdrom type iso9660
(ro,nosuid,nodev,user=perle)

In the example the CD-ROM drive is mounted as slave
on the primary IDE controller (/dev/hdb), and the data
contained on the CD can be accessed under the
directory /media/cdrom in the Linux file hierarchy. You
can tell from the filesystem type iso9660 that this is a
data CD.

Which program is tying up the
drive?

QAfter I had looked at a CD with graphics on my
Linux computer, I had the following problem:

when I tried to unmount the CD drive, this error
message appeared:
unmount: /media/cdrom: The device is

busy.

How can I find out which program is preventing an
unmount?

Dr. Linux: You will get this error message, or its
graphical equivalent as shown in Figure 1, if there is
an open file tying up the device which you are trying
to close.

You can find which process has opened this file
quite simply with the command lsof (“list open files”).
This command can be used in so many ways that the
associated manpage contains over 2,000 lines. It is
usually found under /usr/sbin – should your search
path not include this directory, you must instead call
up the command with the full path included, lsof
would be /usr/sbin/lsof.

As an argument, give it the device name and,
where applicable, the path of the file which you want
to know about. In the case of a blocked CD drive,
this would be the path of the corresponding device
file. Without specifying some object for lsof to look
at, you will find yourself presented with a list of all
open files on your system, and in all but exceptional
cases this will prove to be very long.

If you have yet to acclimatise yourself to the way in

Figure 1: Which program is holding onto the drive?

BEGINNERS

75LINUX MAGAZINEIssue 22 • 2002

data on the CD, let’s take a close look at the
following output columns:

An lsof /dev/hdb now comes up with an output as
in Listing 1. To find out which tasks are accessing Process The operating

system kernel has direct
access to the resources
of the computer, for
example memory and
computing time. If a
command is invoked or
a program started, it
loads the necessary
program code into the
main memory. Once
started thus, this
program is now referred
to as a task. Each task
has a unique task
number (PID), which the
system keeps in a task
table. Tasks have no
access to resources; they
request these as
required from the
kernel. If the same
program, the command
gimp for example, is
started twice then this
usually involves two
different tasks, although
the same program is
executed. The operating
system kernel allocates
the necessary
computing time and the
memory so quickly that
it gives the impression
that programs can run
simultaneously. Tasks
can multiply themselves
by creating child tasks
by means of
duplication; when this
happens they
themselves are referred
to as parent tasks.
Parent tasks can wait
for their children tasks
to end or die; this does
not work the other way
around.

Listing 1: Example outputs from lsof
perle<\@>maxi:~> lsof /dev/hdb
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
gs 1252 perle 3r REG 3,64 593581 47726 /media/cdrom/autoren.pfd

● The COMMAND column outputs the accessing
command, possibly abbreviated to nine letters.

● PID contains the Process Identification number,
which will be required, for example, should you
want to send the corresponding task to its grave
with the kill command.

● In the third column, overwritten with USER, lsof
gives us the name of the user who started the ball
rolling with the task, though sometimes this will
just be his or her user-ID (UID).

If, under COMMAND, you find a program which you
did not even start and want to get right to the
bottom of this matter, it’s worth using the classic
pstree command. With this command you get a
display of tasks in tree form, so that you quickly get
an overview of which tasks have started which other
tasks. With the option –p the pstree output also
includes the PIDs (Figure 2).

There are many graphical user interfaces and
programs that allow you to administer tasks, which
you are welcome to use once you have found one
that suits your needs. However, remember that pstree
will be available on all systems, even an old one, so
keep a healthy respect for it.

Figure 2: pstree displays tasks in tree form

If there are tasks preventing the unmounting of
the CD which you started under your User-ID, you
can shoot them down with the command kill and the
respective PID as argument. Sometimes a task will not
react to this and may need a firmer hand by sending
progressively more threatening signals until it realises
who the boss is. Starting with kill –15 <PID> will,
hopefully, get the task to close in a clean way, but if
this fails you will need the heavy-handed kill –9
<PID>.

perle@maxi:~> kill –9 1252

The tasks of other users can only be shot down by
root; it goes without saying that when you are
equipped with root powers you must proceed with
great caution. As soon as the task in question has
breathed its last, there is no longer an obstacle to an
unmount of the CD.

Is it running or isn’t it?

QWhen configuring utilities which are controlled
by daemons (for example cron), I often find in

the documentation the demand to check whether
the respective daemon or the program is running.
How do I ascertain this quickly and easily?

Dr. Linux: In the /var sector of the Linux directory
tree you will find data which can be changed quickly,
ergo is variable. This also includes the information as
to whether a certain daemon is running. If it is
started, it also receives (like every other task) a task-
ID, but one which, unlike “normal” tasks, is recorded
in a file named “name.pid” in /var/run. This prevents
one of the daemons being started twice, and when
the system prepares itself to be powered down it is
immediately apparent which utilities must be shut
down first, which is why you don’t just turn a Linux
box off.

If you find an entry matching a daemon in /var/run,
you can normally assume that the corresponding
utility has been started (Listing 2). Obviously it may
be that it is doing nothing at all at this precise
moment and is just passing the time until its next
appointment; this depends on its task and the
respective configuration. If you need the task-ID, it is
best to look at the content of the file with cat – the
output is limited to just one number, so that the use

BEGINNERS

76 LINUX MAGAZINE Issue 22 • 2002

Daemons An
abbreviation for Disk
and Execution Monitor.
Daemons are not an
integral part of the
system kernel, but
programs which run in
the background and
make their services
available to other
programs or computers.
Some are started when
booting and remain
active throughout the
running time of a
system; others are active
only as long as their
services are required.

Exit–Status A register
value, defined by the
programmer, which
defines how a program
departs this life – either
successfully, on the
grounds of a bug or
otherwise.

Listing 2
The .pid-files in /var/run contain the PIDs of started daemons

perle@maxi:/var/run> ls –l
total 112@l = –rw–r––r–– 1 root root 4 Mar 6 09:26 atd.pid

–rw–r––r–– 1 root root 4 Mar 6 09:26 cron.pid
–rw–r––––– 1 root root 4 Mar 6 09:26 gpm.pid
–rw–r––r–– 1 root root 4 Mar 6 09:26 inetd.pid
–rw–r––r–– 1 root root 4 Mar 6 09:26 klogd.pid
–rw–r––r–– 1 lp lp 4 Mar 6 09:26 lpd.printer
–rw–r––r–– 1 root root 4 Mar 6 09:26 nscd.pid
drwxr–x––T 2 root root 4096 Mar 6 10:18 sendmail
–rw–r––r–– 1 root root 38 Mar 6 10:18 sendmail.pid
drwxr–x––– 2 root dialout 4096 Mar 6 09:26 smpppd
–rw–r––r–– 1 root root 4 Mar 6 09:26 sshd.pid
–rw–r––r–– 1 root root 4 Mar 6 09:26 syslogd.pid
–rw–rw–r–– 1 root tty 3456 Mar 6 10:29 utmp
–rw–r––r–– 1 root root 4 Mar 6 09:26 xfstt.pid[...]

of a pager such as less would be an extravagance:

perle@maxi:/var/run> cat cron.pid
599The cron daemon currently running thus bears
the PID 599.

To further your conviction that a program really is
alive and kicking, there is a link to the program
killall5 with the command pidof (under SuSE this is in
/sbin, rather than in the usual user path). Give pidof
the name of the wanted program, which in this case
does not even have to be a daemon. If it is running,
you will receive as output its PID; if it has been
started more than once, pidof outputs all task
identification numbers.

perle@maxi:~>/sbin/pidof /sbin/syslogd
337

If pidof says nothing after your input, you are dealing
with a script (or with something which pidof believes
to be one, though this belief does not have to be
correct). In this case specify the option –x too:

perle@maxi:~> /sbin/pidof –x kdeinit
1125 929 927 923 921 919 909 895 893 89

Hollywood’s nightmares in the
system?

QWhen I start top, in order to check that the system
is running, I sometimes find one or more zombies

in the system (Listing 3). What does this mean?
Dr. Linux: The Film “Dawn of the Dead” defines the
term Zombie thus: “When there’s no more room in
Hell, then the dead come back to earth.”.
Anyone who is now shuddering at his or her Linux

system can sit back and relax, because there is also
death in the Unix world. This applies to tasks –
specifically when they stop on their own or are shut
down. A zombie is a dead task, whose Exit–Status
continues to be kept by the kernel in the task table
and waits for its parent process to read it. Only then
can it be deleted in peace from the task table. If the
parent process dies before it has read this register
value, the zombie is also deleted.

Background or foreground?

QI know that I can start programs in the
background on a command line, if I put an &

after the command, but which command do I use to
get one of several background tasks back into the
foreground, so that I can shut it down using Ctrl+C
for example?
Dr. Linux: Programs sent into the background by a
command line, so as not to block the console, are
referred to as Jobs. When a job is started, the
command is also given, in addition to its task
number, a figure in brackets, the so-called Job
Number.

perle@maxi:~> emacs &
[1] 1650

The background tasks can be listed for each console
(and each X terminal) with the command jobs:

perle@maxi:~> jobs
[1] Running emacs &
[2]– Running gimp &
[3]+ Running xtetris &

The active background programs are marked with
Running. Other possibilities are Stopped for

BEGINNERS

77LINUX MAGAZINEIssue 22 • 2002

Listing 3: top sees a zombie
1:01am up 13:29, 1 users, load average: 0.25, 0.19, 0.12
88 processes: 86 sleeping, 2 running, 1 zombie, 0 stopped
CPU states: 7.2% user, 8.0% system, 0.0% nice, 84.6% idle
Mem: 320072K av, 293952K used, 26120K free, 0K shrd,
16496K buff
Swap: 305152K av, 3276K used, 301876K free
140224K cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND

1719 perle 19 0 9224 8860 7164 R 8.0 2.7 0:25 kdeinit
1286 root 16 0 22264 13M 1720 S 5.7 4.3 9:40 X
4808 perle 14 0 1096 1096 792 R 1.3 0.3 0:09 top
1 root 9 0 208 208 176 S 0.0 0.0 0:04 init
[...]
1445 root 9 0 0 0 0 Z 0.0 0.0 0:00 cron[...]

interrupted programs, Terminated or Done. You will
also come across minus and plus signs. + indicates
the most recently started background process, – the
previous ones. These signs can be handed over as
arguments to the command fg with a preceding
percentage sign (%), which brings the background
process to the foreground. Other possible arguments
include:

● %n, where n must be replaced by the job number,
i.e. the figure placed in brackets.

● %e, which keeps the job whose command line
commences with the character string e, in the
foreground. If more than one background
command fits the character string, you will get the
error message:

bash: fg: ambiguous job spec: e

● %?s, which brings forward the background
process, whose command line contains the
character string s (or complains about an
ambiguous job specification).

● %% or %+, which both mean the current job.

● %–, which stands for the previous job.

● fg is not the only command which helps in job
administration in bash. The following commands
also accept the arguments just described above:

● bg sends a job into the background. So that bg
cannot enter into a shell and block a foreground
process, this must be temporarily be stopped with
Ctrl+Z.

● kill ends the job specified as argument. If the
pattern matches several tasks, however, there will
be an error message.

● The listing of the jobs with jobs can be limited with
the aforementioned arguments to certain tasks.
In practice this looks something like this:

perle@maxi:~> jobs
[1] Running emacs &
[2]– Running gimp &
[3]+ Running xtetris &
perle@maxi:~> kill %1
perle@maxi:~> jobs
[1] Stops emacs
[2]– Running gimp &
[3]+ Running xtetris &

Before you shoot down file processing programs such
as Emacs, you should however pause for a moment.
With kill you are in fact also moving the files you’ve
not backed up into oblivion. If you leave the console
from which the program was started, with exit,
though, the editor will be kept open for you and you
can still back up your data.

If, in the terminal to be closed down with exit,
there are still some interrupted jobs waiting, you will
be gently reminded of this fact:

There are stopped jobs.

Only after a second exit will the console take its leave
of you.

