
KNOW HOW

46 LINUX MAGAZINE Issue 22 • 2002

The Secure Shell and OpenSSH

SECURE
ACCESS

Derek Clifford – Director of
Micro Logic Consultants, a
consultancy specialising in
configuration management,
design and rollout of standard
configurations, and general
Windows and unix support

As anyone who has

ever left a vital file

behind will

appreciate, the

ability to remotely

connect to a system

is immensely useful.

Derek Clifford

explains how to do

this securely with

SSH

With more and more users permanently
connected to the Internet, it can be useful,
when away from your home or office, to be

able to connect to your own server or network. In most
cases (I hope) this will have been made virtually
impossible by the firewall software or hardware installed
as of necessity these days. Simply opening up the
firewall to allow FTP, telnet and other communication
would be madness, and apart from the vulnerability
would further compromise the systems because these
programs transmit unencrypted passwords. The secure
shell (SSH) offers a solution to this problem, by both
controlling access in a secure way, and by using public
key encryption to secure communication.

History
SSH was originally written by Tatu Ylˆnen, and the
first release was Freely available. However further
developments of the original program were issued
under more restrictive licences, which severely
limited its commercial use. In 1999 Bjˆrn Grˆnvall
took the original Free release and produced a more
reliable product called OSSH. When this became
known to the developers of the OpenBSD system,
they took this version and produced OpenSSH,
which contained no proprietary or patented
software or algorithms, such components being
used from external libraries. The OpenBSD group
continued to develop OpenSSH, but found that
porting to other Unix systems was complicated,
and required many changes for system
dependencies. Thus the OpenBSD group now
produce the core developments of OpenSSH for
OpenBSD, and other groups port this code to
produce a portable version.

Legal problems
Like Phil Zimmerman’s PGP there were both legal

and commercial problems with the product. The ban
on the export of strong encryption from the USA
was overcome by sending a non-US developer to
Canada to develop the first version of OpenSSH. The
RSA patent on the asymmetric encryption algorithm
made legal commercial use difficult, but this problem
disappeared with the expiry of the patent.

Protocols
The concept of public key cryptography in which a
pair of keys are used, one remaining secret, the
other freely publishable to all was mooted by Diffie
and Hellman in 1976. Up to this time the major
cryptographic algorithms relied on a single key being
kept secret and accessed only by the sender and
recipient of a message. In 1977 a practical
implementation of the public/private key system was
developed by Rivest, Shamir and Adleman (RSA). The
RSA algorithm and other further developments of
the technique are the most popular and most secure
methods of encryption available. OpenSSH offers the
choice of RSA and DSA algorithms for the
identification of users and hosts

The original SSH1 protocol has two variants: 1.3
and 1.5. These used the public key/private key RSA
(RSA public key encryption) algorithms for
authorisation, and simpler 3DES (DES encryption
algorithm) and Blowfish (Blowfish cipher) systems for
encoding data. Problems with the RSA patent made
commercial use of SSH difficult, but the US patent
expired in September 2000, so there is no longer a
problem. SSH1 uses a cyclic redundancy check to
maintain data integrity, but this has been found to
be crackable.

SSH2 was introduced to overcome the RSA patent
issue, and to improve data integrity. The DSA
(Digital Signature Algorithm) and DH (Diffie-Hellman
key agreement) encryption algorithms are used for

KNOW HOW

47LINUX MAGAZINEIssue 22 • 2002

authentication, with which
there are no patent
problems. The CRC problem
is solved by using a
HMAC algorithm.

OpenSSH supports
all of these variants,
but there is little point
in using anything but
SSH2, unless a system does
not have suitable clients available.

Getting OpenSSH
The latest version of OpenSSH is 3.2.3, and was
released on 22 May 2002. The portable software for
non-BSD systems is designated with version numbers
such as 3.2.3p1. rpms for Red Hat distributions and
a source rpm are also available. The current portable
download is openssh-3.2.3p1.tar.gz, and a suitable
download mirror site (there is a very extensive set of
mirrors) can be located at
http://www.openssh.com/portable.html. The
software requires two other packages to be installed,
Zlib (a compression library) and OpenSSL (Secure
Socket Layer) 0.9.6 or later.

SSH Components
The secure shell system comprises a server daemon
sshd, several clients: ssh and slogin (secure
equivalents to rsh, the remote shell, and rlogin) scp
(secure remote copy), sftp (secure ftp) and utilities
for generating and using identification keys. The
daemon needs to be started automatically on the
remote machine through one of the startup scripts,
and the clients and utilities need to be installed on
the client machine. In practice the easiest option is
just to install the software on both client and server,
as it is necessary to generate a host key for each
machine, which the installation software does
automatically.

Installation
For the majority of Linux and other Unix systems it
will be necessary to compile the source. Having
expanded the tarball, the sequence:

./configure
make
make install

will compile the system, install it and generate the
host keys. The latest version installs by default to
/usr/local/sbin/ssh, and its configuration files to
/usr/local/etc which may not be where an earlier
version exists in your distribution. These can be
overridden with the switches:

./configure –prefix=/usr –sysconfdir=/etc/ssh

which will install to /usr/sbin/ssh with configuration
files in /etc/ssh.

The system is controlled by the configuration files
/etc/ssh_config, which controls the client programs
and shd_config, which controls the server daemon.
A user can override these global settings through
settings in the local ~/.ssh/config file. Options in
ssh_config are applied to a specific host, or group
of hosts selected by wildcards, and control the
overall parameters to be used when communicating
with that host. Settings are applied once only, so
host specific parameters must be set in the file
before system-wide defaults. The order of
precedence in selecting the parameters is first any
command-line options given to ssh, followed by
user-defined configuration files and finally the
system-wide default file.

Many of the default settings will be suitable for
the normal user and are described in the manpages,
but there are one or two parameters which are
worth looking at. On the client side the parameter
FallBackToRsh can take the values yes or no, and
setting it to yes will cause ssh to revert to the
standard Unix remote shell rsh if ssh is not running
on the target host. Although a warning is issued
this could lead to passwords being revealed.
Fortunately the default for this parameter is no. If
Xwindows sessions are to be used over the secure
shell, the parameter ForwardX11 and ForwardAgent
must be set to yes (default is no). This will allow
X11 traffic, and automatically set the remote shell’s
DISPLAY variable to direct the output of the X server
correctly. Systems behind firewalls may have
difficulty with the fact that ssh uses low-numbered
ports to make connections. If this is a problem the
parameter UsePrivilegedPort can be set to no, to
cause ports above 1024 to be used. Port 22 will
have to be opened to allow the SSH server to
function. The SSH daemon configuration file also
contains a setting which is required to be enabled if
X11 is to be used. The parameter X11Forwarding
must be set to yes.

Basic use of ssh
Having set up the system and started sshd (probably
by modifying one of the startup .rc files) the simplest

KNOW HOW

48 LINUX MAGAZINE Issue 22 • 2002

option is to start a session on a remote host with the
command:

bohr# ssh hostname

The first time this command is executed the system
will report that the identity of hostname cannot be
confirmed, as the public key of hostname is not yet
known on the local machine. The identity of the
machine should really be verified, but it may not be
practical to do so. The message does report the
beginning of the remote host’s public key, so this
may be checked to give some confidence that the
correct machine has been reached. On proceeding
the system will add the remote host’s public key to
the list of known hosts, and will in future verify the
identity of the host.

Because the user is not yet known to the remote
host, the password for the user on the remote
machine will be required. The need to type a
password each time may be removed if the user sets
his public key in the .ssh/authorized_keys of the
target user’s home directory on the remote machine.

Having entered the password, the user is
running a shell on the remote host, no password
has been sent in readable form over the network,
and all subsequent communication between the
machines is encrypted.

Setting up a key pair
To remove the need to type in a password for the
remote user account, a public and private key pair is
generated. The utility to perform this task is ssh-

keygen. Most of the default settings are suitable, but
it is necessary to specify the type of key to be
generated. the switch –t controls this, and the
allowed values are rsa and dsa for the SSH2
protocol, or rsa1 for the SSH1 protocol. The key
length can range from 512 bits to 2048 bits, with a
default of 1024 (–b switch). The user is asked where
to store the key, but the default is usually
appropriate, and a passphrase is input and verified.
The passphrase cannot be recovered from the key, so
if it is lost new keys will need to be generated and
distributed. Use of the utility is shown in Figure 1.
The output of the utility is two keyfiles, in the case
of RSA encryption: id_rsa and id_rsa.pub. The public
key may be widely distributed (.pub) but the private
key must never be revealed. In order to use the keys,
the public key must be installed in the
authorized_keys file in the $HOME/.ssh directory of
the user account to be made accessible on the
remote host.

The authentication agent
Simply adding the user’s public key to the
authorized_keys file merely replaces the request for a
password with a request for the key’s passphrase.
The trick to allow secure but friendly access to the
remote host is to have the key available in memory,
and for this the authentication agent ssh-agent is
used. The agent is given a command, and all
children of the agent inherit the keys added. For
example the command:

bohr # ssh-agent $SHELL

Figure 1: Setting up public and private keys with ssh-keygen

Figure 2: Passwordless but secure access
with Xwindows started through ssh-agent

KNOW HOW

49LINUX MAGAZINEIssue 22 • 2002

spawns a shell. Keys may now be added and will be
available to all sessions started in the shell. Adding
the current user’s key is the default action of ssh-
add, while other keys may be added by specifying
the user’s keyfile:

ssh-add /home/user/.ssh/id_rsa

For each key to be added the passphrase will be
requested, but this will be required only once, any
remote sessions being started will automatically
supply the key and the user will be logged on
without a dialogue. The –l switch to ssh-add lists
the keys available in memory. Obviously to gain the
best use of the authorisation agent it should be
started as the parent of all subsequent shells in the
user’s initialisation files.

scp and sftp
Apart from the fact that there are additional
switches for selecting encryption types, and if
interactive authentication is used the programs will
request passwords or passphrases, these programs
behave in exactly the same way as rcp and ftp.

Xwindows
It is necessary to set the X11 switches in the
configuration files to ‘yes’ in order to pass X11
traffic, and to set the DISPLAY variable. Obviously
it would be very tedious to have to type the
passphrase or password in every Xterm opened, so
the preferred method of starting the Xwindows
system is with ssh-agent. This will ensure that the
agent makes the security keys available for every
window opened (Figure 2).

Windows and Mac clients
If you are stuck with only a Windows or Mac
system to access your server, there are some free
products available. For Windows PuTTY provides a
client which supports SSH (Figure 3), together with
scp and sftp clients, plus the ability to generate
key pairs. TTSSH is also a free Windows client

which is an extension to TeraTerm Pro, but only
supports the SSH1 protocol, and does not provide
key generation or scp and sftp utilities. The
Macintosh is catered for by Nifty Telnet (figure 4)
(which only supports the SSH1 protocol) and
MacSSH (which only supports SSH2).

Figure 3: The Windows PuTTY client supports SSH

Info
OpenSSH http://www.openssh.com/
OpenSSL http://www.openssl.org/
Zlib http://www.gzip.org/zlib/
PuTTY
http://www.chiark.greenend.org.uk/~sgtatham/putty/
TTSSH http://www.zip.com.au/~roca/ttssh.html
TeraTerm Pro http://download.com.com/3000-U
2155-890547.html?legacy=cnet
Nifty Telnet
http://www.lysator.liu.se/~jonasw/freeware/niftyssh/
MacSSH http://pro.wanadoo.fr/chombier/

Figure 4: Macintosh support

