
PROGRAMMING

64 LINUX MAGAZINE Issue 22 • 2001

functions are listed in Table 1. Listing 2 (xpath.py)
shows the transformation of our little Python book
database into XHTML.

First we use From XmlStream() to create a DOM
tree. This is nothing new as we already did it in part
1. The function Evaluate(xpath, context) forms the
link between DOM and XPath. It requires a path
expression as an argument and a DOM node as
context. In our example it steps through all document
nodes of the type book in one iteration. We are using
the root of the DOM tree as context.

As soon as we find a book node we can use a
relative path expression to access the author or other
elements directly, always passing the current book
node as context. XPath’s text() function returns a set
of text nodes.

XPath and DOM are not conflicting methods. On
the contrary, XPath builds on DOM and simplifies the
handling of XML documents. The DOM API with its
multitude of functions and attributes for different
types of nodes can often get quite confusing. The
XPath API only uses the Evaluate() function, while the
complexity has been transferred to the syntax of the
XPath expressions.

4Suite
If you use Python for XML processing you might
expect the PyXML package to be sufficient for any of
the simple examples given here. Unfortunately that is
not the case. XSLT support in PyXML is based on an
older XSLT version of 4Suite from Four Thought,
which contains errors.

For the XSLT part we are therefore using the
current version 0.12.0a2 of 4Suite. The package is
installed with python setup.py install using the
familiar distutils tool. Like PyXML, 4Suite is a package

Listing 1: websync.hs
01 from xml.dom.ext.reader.Sax2 import FromXmlStream
02 from xml.xpath import Evaluate
03 fp = open(‘pythonbooks.xml’,’r’)
04 dom = FromXmlStream(fp)
05 fp.close()
06 print “<table>”
07 print “<tr>”
08 print “<th>Author(s)</th><th>Title</th> <th>Publisher</th>”
09 print “</tr>”
10 for book in Evaluate(‘book’, dom .documentElement):
11 print “<tr>”
12 for item in [‘author’,’title’,’publisher’]:
13 path = ‘%s/text()’ % item
14 print ‘<td>%s</td>’ % Evaluate(path, book)[0].nodeValue
15 print “</tr>”
16 print “</table>”

XML processing with Python,
Part 2: XPath and XSLT

RE-PACKAGE
XPath and XSLT are

technologies for

processing and

converting XML

documents, which are

extremely easy to use

with a scripting

language like Python.

Andreas Jung takes a

closer look

Figure 1: The XSLT processor combines XML documents
with XSLT stylesheets to create other types of formats

The author
Andreas Jung lives near
Washington D.C. and
works for Zope
Corporation as part of the
Zope core team.

In the first part of our XML discussion we looked at
DOM and SAX, both of which allow you to access
the structure of XML documents through an API.

However, since XML is primarily intended as a central
exchange format it is equally important to be able to
convert documents into other formats. In this part we
will therefore take a look at XPath and XSLT.

XPath is a path-based navigation and processing
technology for XML documents. XSLT, on the other
hand, describes rule-based XML transformations.
Both techniques can turn XML files into HTML or
other formats.

In order to demonstrate these techniques we will
again be using the XML file pythonbooks.xml in
Listing 1 that you may remember from the first part.
We are going to transform it into an XHTML table
using both XPath and XSLT.

Navigation with XPath
XPath is a W3C standard that enables you to access
the elements of XML documents (or, more precisely,
their DOM tree) using a path expression. A path
expression is similar to the path of a file within a
filesystem, as both DOM trees and filesystems are
organised hierarchically. An XPath expression
references a set of nodes, a boolean value, a floating
point number or a character string.

A path expression is always tied to the particular
context in which it is used (typically a node of a DOM
tree). The most important path expressions and XPath

PROGRAMMING

65LINUX MAGAZINEIssue 22 • 2001

for XML processing under Python, but it covers a
much larger range of functions than PyXML.
Correspondingly, its API is more substantial and
complex.

XSLT – transformation with rules
XSLT’s approach is fundamentally different from that
of XPath on its own. Here, the transformation of
XML documents occurs via a number of
transformation rules held in an XSLT stylesheet. A
stylesheet is itself an XML document. Stylesheet rules
use XPath expressions to reference nodes within an
XML document.

The transformation is performed by an XSLT
processor, which generates the relevant output from
the XML file and the stylesheet (see Figure 1). The
exact syntax and semantics of XSLT are relatively
complex and have already been covered in Linux
Magazine a few months ago. Additional information
can be found at from the links in the Info box.

To transform the Python book XML file we are
using the transform.xslt stylesheet. It consists
primarily of three rules (<xsl:template match=”...”>)
for matching pythonbooks, book and author, title
and publisher. The rule <xsl:apply-templates

Listing 2: xpath.py
01 from xml.dom.ext.reader.Sax2 import FromXmlStream
02 from xml.xpath import Evaluate
03 fp = open(‘pythonbooks.xml’,’r’)
04 dom = FromXmlStream(fp)
05 fp.close()
06 print “<table>”
07 print “<tr>”
08 print “<th>Author(s)</th><th>Title</th> <th>Publisher</th>”
09 print “</tr>”
10 for book in Evaluate(‘book’, dom .documentElement):
11 print “<tr>”
12 for item in [‘author’,’title’,’publisher’]:
13 path = ‘%s/text()’ % item
14 print ‘<td>%s</td>’ % Evaluate(path, book)[0].nodeValue
15 print “</tr>”
16 print “</table>”

select=”...”> instructs the XSLT processor to continue
with a rule for the specified element. We are using
<xsl:value-of select=”.”> to access the content of the
text nodes.

As you can see, the XSLT processor is the central
feature of any XSLT application, and 4Suite provides a
separate processor class for this purpose. For XSLT
processing the processor requires a reader that is able

PROGRAMMING

66 LINUX MAGAZINE Issue 22 • 2001

to read the stylesheet as well as the file to be
transformed from the InputSource. An InputSource
abstracts the input, so that the reader does not need
to concern itself with the source.

In our example xslt.py (Listing 4) we are using a
non-validating parser that is registered with the
processor. The XSLT stylesheet is passed to the
processor by means of the appendStylesheet() call.
The processor itself is then started with run(). Output
in our example is via the standard output.

Conclusion
This part shows that you can convert XML documents
without changing the Python program. The Python
program merely starts the transformation, which is
the responsibility of the XSLT processor. In this, XPath
is an integral component of XSLT.

XPath is an interesting alternative to DOM or SAX
in cases where you require access to parts or nodes
of XML documents without wanting to go to the
trouble of writing a parser. In combination with XSLT
this gives the developer a very powerful tool for
processing XML files.

Listing 4: xslt.py
01 import sys, urllib
02 from Ft.Xml import InputSource, Domlette
03 from Ft.Xml.Xslt import Processor
04 xml = urllib.pathname2url
(“pythonbooks.xml”)
05 xslt = urllib.pathname2url
(“transform.xslt”)
06 processor = Processor.Processor()
07 reader = Domlette.NonvalidatingReader
08 processor.setDocumentReader(reader)
09 isrc = InputSource.DefaultFactory.
fromUri(xslt)
10 processor.appendStylesheet(isrc)
11 isrc = InputSource.DefaultFactory.
fromUri(xml)
12 processor.run
(isrc,outputStream=sys.stdout)

Listing 3: transform.xslt
01 <?xml version=”1.0” encoding=”iso-8859-1” ?>
02 <xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
03 <xsl:output method=”html” />
04 <xsl:template match=”pythonbooks”>
05 <table>
06 <tr>
07 <th>Author(s)</th><th>Title</th> <th>Publisher</th>
08 </tr>
09 <xsl:apply-templates select=”book”>
10 <xsl:sort select=”author” />
11 </xsl:apply-templates>
12 </table>
13 </xsl:template>
14 <xsl:template match=”book”>
15 <tr>
16 <xsl:apply-templates select=”author”/>
17 <xsl:apply-templates select=”title”/>
18 <xsl:apply-templates select=”publisher”/>
19 </tr>
20 </xsl:template>
21 <xsl:template match=”author|publisher|title”>
22 <td> <xsl:value-of select=”.”/> </td>
23 </xsl:template>
24 </xsl:stylesheet>

Info
The Python XML module
http://pyxml.sourceforge.net
XPath recommendation
http://www.w3.org/TR/xpath
Four Thought http://www.fourthought.com
4Suite downloads
ftp://ftp.fourthought.com/pub/4Suite
XSLT and XPath tutorial
http://www.vbxml.com/xsl/tutorials/intro/default.asp
XSLT tutorial
http://www.zvon.org/xxl/XSLTutorial/Books/Book1/
C.A. Jones and F.L. Drake, Jr., Python & XML
(O’Reilly, 2002)

Table 1: Important XPath expressions
Xpath syntax Path expressions
/ The root node
. Self node
.. Parent node
@attr All attributes with the name “attr”
@* All attributes
node All elements with the name “node”
* All elements
/node All child elements with the name “node”
/* All child elements

Xpath syntax Node set and string functions
local-name() Returns the local part of the expanded name of the node
name() Returns the name of an element
string(obj) Converts an object to a string
concat(s1,s2,..) Returns the concatenation of its arguments

Xpath syntax Node set functions
last() Returns a number equal to the context size
position() Returns a number equal to the context position
count() Returns the number of selected elements
number(ojb) Converts its argument to a number
sum(node-set) Returns the sum, for each node in the argument node-set
string-length(s) Returns the number of characters in a string

Xpath syntax Boolean functions
startswith(s1,s2) Returns true if the first string starts with the second string
contains(s1,s2) Returns true if the first string contains the second string
boolean(obj) Converts its agrument to Boolean
not(val) Returns true if its argument is false, and false otherwise
true(),false() Returns true, returns false

