
equals. The conditionals (>= and <=)
bind tighter than the &&, and so both
individual cases are checked separately,
and then ANDed together. Most other
languages have a set of precedence rules
similar to C, with some minor variations,
so understanding one is good grounding
for the others.

The most frequent problem caused by
precedence is the bitwise AND (&). Since
it is often used as a test (‘is bit 4 set?’, for
example) one might normally attempt to
use code such as:

if (c & 0x7f != 0)
/* Don't do this! It doesn't U

work!!! */
printf("Success!?\n");

By referring to the table again, you
should be able to see why this doesn’t
work. Looking at both operators (& and
!=), we see that the not equals has the

higher precedence, and so is done first. It
is this result that is then ANDed with c in
the test. Since 0x7f is never equal to 0 it
evaluates to true (represented as 1 – see
Truth or Dare, later), and the test will
actually check for the least significant bit
being set. This determines if a number is
odd or even and will, quite literally, work
half the time!

I recommend knowing the basic rules
from this table, but not to memorising all
of it slavishly. My reasons are two-fold.
Firstly – you should never need it, since
even dullest pub conversation can not be
lightened with a ‘did you know’ session
on operator precedence! (I know – I’ve
been there!). Secondly, if you write code
that relies on the precedence rules it will
not be easily understood, and almost
incomprehensible to anyone that has not
memorised it. And since any program will
be read more times that it is written, this
is very bad thing. Not to mention the

66 September 2002 www.linux-magazine.com

Which comes first in the sum, is
it the multiplication or the
addition? By running the

example through any nearby compiler
you’ll see the answer is 13. But is that
always true? Or is it just the gcc? Without
giving too much of the plot away – it is
always true! It has to be true, otherwise
the compiler would be compiling another
language to rather than C!

All The President’s Men
(sorry!)
Simply put, precedence is a set of rules
built into the language (which all the
compilers must therefore follow) that
indicate which parts of an expression
should get evaluated first, and which
should happen second.

Table 1 is listed from the high priority
operators which occur first, like the
brackets (naturally, since their purpose is
to group things together) through the
mid-level operators (multiplication and
addition) down to assignments. You will
also notice that some groups (such as the
arithmetic, for example) are split in half.
This indicates that while multiplication,
division and modulus (remainder) all
have the same precedence level, addition
and subtraction are slightly lower. So
5*2+3 will be 13, because 5*2 (=10) is
done first, followed by 10+3. We could
have been explicit by writing (5*2)+3,
but this is overkill since we know the
basic rules.

The order itself has been well chosen
as 99% of expressions you write will fit
naturally the precedence order, without
explicit bracketing. This can be seen
through example.

c = szSentance[iFirstLetter=0];
if (c >= 'A' && c <= 'Z')

printf("Starting with upper U

case is good\n");

The square brackets keep the assignment
internal to itself, and so it can not affect
anything else. As the assignment is low,
any expressions we try and evaluate with
always occur on the right hand of the

C tutorialPROGRAMMING

Precedence solves one of the great mysteries in programming: does 5*2+3 equal

13 or 25! To find out the answer, and why, we asked Steven Goodwin to explain

this and the other finer points in C. BY STEVEN GOODWIN

C: Part 10

Language of the ‘C’

problems you can get yourself into if you
misquote a precedence rule and spend an
hour looking for a bug that could have
been avoided by using brackets.

Same Size Feet
Operators like * and / are in the same
group. This means they have exactly the
same precedence and so will evaluate
them from left to right (according the
associativity of the operator). This can
become a problem when mixing different
operators (with equal precedence), so
bracketing should be used to state the
intention:

ans = 10*x / 5*y; U

/* Careful - layout can U

confuse! */

is actually the same as:

ans = 2*x*y;
/* Acts like (((10*x) / 5) U

* y) */

not

ans = (10*x) / (5*y);

This is a good case where explicitly
bracketing will actually help to clarify the
meaning, and not clutter the code.

The order in which the component
expressions are evaluated is determined
by the compiler, and not by the language.
In our previous example it doesn’t matter
if (10*x) is worked out before (5*y), since
we get the same answer. The compiler is

then free to optimise the order to suit the
target platform, but in cases like:

iTotalDishes = CountRiceDishesU
() + CountNoodleDishes();

Either function could be the first called so
you can not make assumptions as to
which it is (even if you know!), or change
the global variables from inside those
functions that the other relies on. The
same is true with function parameters;
either could be evaluated first and so it’s
behaviour is said to be undefined. We’ll
cover the definition of this later.

CalcTotalDishes(CountRiceDishesU
(), CountNoodleDishes());

Similarly, the following code will also be
ambiguous because of ++ iDiners. The
increment can happen at any time before
the sequence point (the semi-colon,
remember) so the GetDinersWantingRice
function could receive one of two values
– creating an ambiguity we should avoid.
You may know in which order gcc does it,
however, relying on such behaviour is
bad programming practice and to be
avoided at all costs!

iFractionOfRiceEaters = U

GetDinersWantingRice(iDiners) U

/ ++iDiners;

The other major case where precedence
rules need to be followed is in macros.
We shall look at this in a later issue.

Truth or Dare
It is sometimes a great concern of new
programmers (in all languages) as to the
value of 'true'. We want to know the
truth! Over the years, different languages
have used different values for 'true': 1, -1,
any non-zero number. In 'C' the value of
'true' is 1. The concept is anything non-
zero! This means that at any expression
(such as 'a > b' or 'a != b') which can
be 'true' or 'false' will evaluate to the
number 1, or 0, respectively. Anytime in a
conditional statement, a number is used,
like 'if (a)' or 'while(a)', any non-zero
value is treated as true, and zero is the
only false case.

True can only be considered as 1 in
native expressions like greater than, or
not equals. Functions, such as isalpha
(see part 7 Linux Magazine Issue 20 p62)

67www.linux-magazine.com September 2002

PROGRAMMINGC tutorial

Group Operator Description Associativity
Reference () Function call, bracketed expression Left to right

[] Array element
. Structure member
-> Indirect structure member

Unary + Unary plus (as in +5) Right to left
- Unary minus (as in -5)
++ Increment (pre & post)
– Decrement (pre & post)
~ One’s compliment (bitwise NOT)
(type) Type cast
! Logical NOT
sizeof Size (in bytes) of variable or structure
* Indirect reference (as in *ptr)
& Address of variable

Arithmetic * Multiplication Left to right
/ Division
% Modulus (remainder)

+ Addition
- Subtraction

Bit shift << Bit shift to left Left to right
> Bit shift to right

Comparisons < Less than Left to right
<= Less than, or equal
> Greater than
>= Greater than, or equal

== Equal to
!= Not equal to

Bitwise operators & Bitwise AND Left to right

| Bitwise OR

^ Bitwise XOR (exclusive OR)

Logical constructs && Logical AND Left to right

|| Logical OR
Conditional ? : The ternary operator, or Right to left

conditional expression
Assignment = *= /= %= += -= Various assignments where e1 op= e2; Right to left

<<= >= &= |= ̂ = is equivalent to: e1 = (e1) op (e2);
Comma , Multiple evaluation Left to right

TABLE 1

{
if (pTable->iSize == MAX_SIZE)
return 1; /* a 'true' value */
}
return 0; /* 'false' */

}

This routine is not uncommon, and a
classic example where lazy evaluation
would help. If we needed to check the
pTable pointer and the iSize value, so we
could write:

int IsTableFull(struct sTABLE U

*pTable)
{
if (pTable && pTable->iSize U

== MAX_SIZE)
return 1; /* a 'true' value */
else
return 0; /* 'false' */

}

C will never try to look at pTable->iSize
if pTable is NULL since it will have
already terminated its evaluation, and so
is safe.

Similarly, we can work the same magic
with OR.

if (a || b || c || d)

Here, the moment an expression is true
(be 'a', 'b', 'c' or 'd') the whole thing
must be true, using a similar process of
logic as above. Again, C works through
them from left to right, as with AND.

The two cases of AND and OR are the
only times when you can guarantee the
order in which the expressions will be
evaluated. With the cases we saw earlier,
of addition and multiplication, it is up to
the compiler to choose the order. But
here, because it must obey the rules of
lazy evaluation, the order will always be
left to right.

Leader of the Pack
Up until now we haven’t tried mixing
types to any degree. There are a couple of
reasons for that. First, with the examples
we have been doing, it is not necessary.
Secondly, it is preferably (from a general
coding standpoint) to deal solely with the
same type in any particular expression
and convert (if necessary) once the task
has been completed . This helps improve
speed and readability. Like precedence,
there is a set of rules in the language that

help produce more optimal code. These
rules automatically change types within
your code so calculations can be done
more efficiently. You should be aware of
these to greater your understanding of C.
Collectively they are known as the rules
of promotion.

In an expression such as a+b+c, the
compiler will promote each variable to a
type suitable for evaluation. It does not
change the variable itself, just the way in
which it is handled when computing
a+b+c. Changed, but to which type?

Well, any chars and shorts are instantly
promoted to an int for the purpose of
calculation since int is defined to be the
natural type for the target processor.
Which, as we’ve seen, is 32 bits on an
x86 machine.

Even amongst integers, however, there
is a pecking order! An unsigned integer in
the expression will cause any of its signed
counterparts to get upgraded to unsigned
status for the length of the equation. This
can cause problems since an expression
of 'iFragCount < iBestFragCount' can
never be true if iFragCount is unsigned
and iBestFragCount is zero, especially
since the compiler will not warn you
when this happens. This can cause a
great deal of grief since the bugs happen
so rarely; but this it is one of the best
arguments for maintaining the type
consistency throughout the program, and
especially within expressions.

Moving on, the type long can hold a
greater range of numbers than int, so any
long numbers in will promote everything
else to long. Don’t worry – nearly there!

Despite all these conversions however,
they will still get prompted to float should
there be any floating-point numbers
present. Likewise, any double precision
floating point numbers (doubles) will
promote their friends to doubles also.
Everything promotes upwards to the
'largest' type. To use a colloquialism –
they are largin’ it!

This promotion only works on the right
hand side of the equals sign, I’m afraid.

x = a + b + c;

Here, a+b+c may all get promoted to
floats or doubles while working out the
answer, but if x is only a short, that
answer will be truncated (in the same
manner as casting) when it gets assigned.
This should be obvious since the user has

68 September 2002 www.linux-magazine.com

return a truth concept (i.e. non-zero), but
not necessarily 1. For this reason, a truth
comparison should always be considered
implicitly.

if (isalpha(cInput)) U

/* this works */
printf("%c is an alphabetic U

character.\n", cInput);

An explicit test should not be used.

if (isalpha(cInput) == 1) U

/* this won't */
printf("%c is an alphabetic U

character.\n", cInput);

Now we can handle the truth, let’s see
another way to use it.

Lazing on a Sunday Afternoon
Like precedence, lazy evaluators are one
of the language features that require an
understanding of the spirit of the law, and
not just the letter. Lazy evaluators how-
ever, feature in languages other than just
C, but (in the spirit of the column!) I shall
concentrate on its use within C.

A lazy evaluator, as the name suggests,
will do as little work as necessary to get
the job done! So, if an expression like:

if (a && b && c && d)

presents itself, we know through simple
logic, that should 'a' be false the entire
expression must also be false. As C also
knows this, it will evaluate 'a', realise it's
futile to consider looking at 'b', 'c' or 'd',
and stop, leaving them unevaluated. If
the expressions were functions, they
would be uncalled, and increments
would not happen.

If 'a' is true, however, the evaluator will
continue to check the other expressions,
exiting at either the first falsehood it
finds, or when it gets to the end of the
expression and can proudly announce
that the whole expression is true!

Code like this can often save space by
reducing the number of nested checks.
For example:

int IsTableFull(struct sTABLE U

*pTable)
{
if (pTable) /* make sure the U

table exists, and protect U

against NULL pointers */

C tutorialPROGRAMMING

specified the type of x, and the compiler
can not arbitrarily change it because the
answer doesn’t fit it! This rarely causes
problems under Linux however; but it
can on (older Unix) systems where an
integer is 16 bits with expressions such as
the following.

long x; /* this is usually U

32 bits */
int a; /* on old Unix systems, U

this might be 16 bits */

a = b = 1000;
x = a * b;

Here, although 1000*1000 is 1,000,000
and the long has enough bits to hold it –
the integer types that are performing this
sum can not. So we would need to manu-
ally promote one of the integers to a long,
that way the normal rules take over –
promote the other variable to a long –
and perform the calculation using 32 bits,
so giving it enough precision to get the
correct answer.

x = (long)a * b;

Highway 61 Revisited
If you have been reading any source code
recently you may have ‘discovered’ some
new data types. Namely,

long int
short int

I’m sorry to disappoint you, but these are
actually quite ordinary! A long int is the
more formal name for a long, whilst short
int is the same as short. This stems from
the time when a variable did not need to
be given an explicit type, and would
default to an integer. As a consequence,
typing long was the same as long int,
since the int part was already implied.

Although I personally do not use it, there
is nothing wrong in doing so.

/* An example of old code U

declaring an integer */
iAnImplicitIntegerVariable;U
/* notice the lack of type */

Oh, and if you’re thinking of trying this –
it will still work as a global variable (with
a warning), but not as a local variable.
Either way, it’s old and archaic. And like
most old things – it smells! So leave it
alone!

Boom Shak A Lak
ASCII is a very good method of storing
data from your program. Whether you
use XML or a flat text file, having your
data open enough to be interpreted by
other programs is an obvious plus that
Linux has thrived on for many years. It is
unlikely, therefore, that you will want to
create binary files for your data. However,
in some instances, most notably graphics,
binary data is unavoidable. As is the
portability problem of endian-ness. Take
a four-byte integer, such as:

int iValue = 0x12345678;
/* hex numbers makes this U

easier to follow since it U

splits nicely into 4 bytes */

This will be stored in four consecutive
bytes in memory – but those bytes could
be 12,34,56,78 or 78,56,34,12. The x86
architecture uses the latter, and is called
little endian. You can always verify this
for yourself with the following code:

char *p = (char *)&iValue;
/* use character pointers to U

read bytes */
printf("%x %x %x %x\n", *p, U

*(p+1), *(p+2), *(p+3));

Looking back to our graphics example, if
the width of the image has also been
stored in little endian form, we have no
problem. However, if it was stored in big
endian, we could read in our number
(0x12345678 is a bit wide for an image,
but bear with me!) and find the size was
actually 0x78563412. Certainly this is not
was is intended!

In the real world this situation would be
known to us ahead of time (when we are
reviewing the file format specification, for
example) but our target machine would
not. We would then have to check the
endian-ness of the machine, and swap the
byte order if it failed to match. Two useful
functions in this case would be:

int IsLittleEndian(void)
{
int iValue = 1; /* Simplified U

version of our test above */

if (*(char *)&iValue == 1)
return 1;
else
return 0;

}

int SwapInt(int iOriginal)
{
int iNew;

iNew = (iOriginal<<24) U

& 0xff000000;
iNew |= (iOriginal>8) U

& 0x00ff0000;
iNew |= (iOriginal<<8) U

& 0x0000ff00;
iNew |= (iOriginal>24) U

& 0x000000ff;
return iNew;
}

Because of Intel’s dominance a lot of
binary formats are based in little-endian,
so those running on x86 will have fewer
problems than those on, say, PowerPC or
Mac architectures. So including endian
specific comments and code is advisable,
but difficult to test without having an
appropriate machine. To gain experience
in byte swapping on an Intel platform is
easy, since the MIDI file format (amongst
others) uses big endian numbers. This
will demonstrate how much (or little,
depending on your view) work is
required. The work itself however is left,
as an exercise for reader! ■

69www.linux-magazine.com September 2002

PROGRAMMINGC tutorial

The three phrases that should strike fear in the heart of any programmer are 'implementation
defined', 'unspecified' and 'undefined'.When a programming manual, library readme, or code says
that the output is 'undefined for this case' it has a very specific meaning. All three mean your pro-
gram will not (always) work as expected if you ignore their advice, but for different reasons.
Implementation defined means it is up the compiler vendor to pick a method, document it, and
stick by it - at least within the current version.They are, however, free to change the behaviour
between releases.
Unspecified means the compiler writers know what will happen, but haven’t documented it.
Undefined means that anything can happen. And it means anything.The results need not adhere
to logic, the expression in question, or even the day of the week!
Suffice to say, you should never write code that relies on, expects, or follows any of these criteria.

Heaven Knows I’m Miserable Now

