he first three articles in this series
Tcovered all the basics of configuring

Linux boxes as network hosts. The
emphasis throughout has been on using
command line tools and editing the text
configuration files. If you have read all
three articles you will know that network
configuration on Linux boxes is actually
very simple.

However, as your network grows it
becomes an increasing chore just to keep
all those configuration files up to date,
particularly if you make significant
changes to the structure of your network.
Add a nameserver to your network, or
change the IP address of a gateway
router, and you will have the task to edit
the configuration files on each and every
network host.

Life would be much easier if it were only
possible for your computers to fetch their
configurations from a central source. Not
only would it make the job of setting up
new machines easier but you could make
network design changes centrally and
have them propagate to all your machines.
Laptops, PDAs and other transient devices
could be connected to your network and
configure themselves automatically.

The good news is that it is possible,
using the Dynamic Host Configuration
Protocol. This article will show you how
to set up DHCP both on the server and
client sides and how you can update your
DNS information dynamically when IP
addresses are assigned through DHCP.

Overview

When a dynamically-configured host is
first connected to a network it has no IP
address nor any notion of the local sub-
net address, netmask etc. So it sends a
broadcast request for configuration
details. If there is a DHCP server on the
local subnet it sends a reply, allocating
the host an IP address and passing on any
other network configuration parameters

Finding a Network Card's
MAC Address

Many NICs come with their MAC address
printed on a label on the card. Another way
to find the MAC address is to configure a
network interface for it (by, say, getting it to
take a dynamic address from DHCP) and
then running ifconfig. In the details returned
by ifconfig, the MAC address for each config-
ured card is given in the HWaddr field.

n September 2002 www.linux-magazine.com

Linux Networking Guide: Part 4

DHCP

A simple guide to configuring Linux networks from the command line.

This final article in the series shows how to use DHCP to configure network

hosts dynamically.

that it has been supplied with. The
dynamically-configured host is now ready
to participate normally on the network.

The server can pass on more than just
the parameters of the host’s network
interface. It can store a wide range of net-
work related information, including the
local domain name, addresses of DNS
servers, routers, WINS servers and much
more. It is entirely up to the DHCP client
software how much of this is then used to
configure a host.

Leases

When a DHCP server assigns an IP
address to a host it is not a permanent
allocation. The server has available a

pool of addresses to which it grants
leases. A lease has a set lifespan and
must be renewed before it expires if the
host is then to retain the same IP address.
Typically, DHCP client software will
attempt to renew a lease once it is
halfway through its lifespan and will
repeat the attempt at regular intervals
until it is either successful or the lease
expires, after which time a new lease
must be requested.

This leasing model allows you to have
a pool of addresses smaller than the total
number of hosts to be connected, if you
know that only a certain fraction of those
hosts are likely to be connected at any
one time.

It is also possible to associate, using
DHCP, a fixed IP address with a particular
hostname and/or network card (which
latter option, since network cards tend
not to flit from device to device, has the
effect of associating the IP address with a
specific piece of hardware). So if the
DHCP client specifies a hostname in its
request or if the request originates from a
network card with a specific MAC
address, then the associated fixed address
may be returned.

Choice of Lease Lifespan

DHCP client software may specify a lease
lifespan when requesting a lease but the
server can have both a default lifespan
setting for requests that don’t specify and
a maximum setting that overrides any
request for a greater span. The value you
assign to these settings will be significant
in the effect on your network.

Firstly, setting a shorter lifespan will
mean more frequent renewals and so
more DHCP-related noise on the network
(as well as making your network more
vulnerable to a failure in your DHCP
server).

Secondly, it is only when you renewing
a lease that the client software checks for
other network configuration details. So if
you set a seven day lease and then give a
new set of name server addresses to the
DHCP server, it will then typically take at
least three and a half days for that
information to propagate throughout the
network.

So sysadmins are typically faced with a
tension between the optimum network
performance and the propagation speed,
which only time, experiment and experi-
ence can resolve.

The Science Bit

DHCP requests and replies are sent using
UDP. The server listens on port 67, the
client on port 68.

Some Drawbacks to DHCP

When using DHCP on your network,
there are certain questions introduced
about the reliability and security. On the
reliability side, if your DHCP server fails
then your entire network may just grind
to a halt. MS Windows workstations are
particularly bothersome in this situation
and will assign themselves a new address
on a reserved subnet, a feature called
Automatic Private IP Addressing.

More seriously, the DHCP protocol
makes no provisions for security. When a
DHCP client sends a broadcast request it
accepts the first reply it gets. A malicious
person could then subvert hosts on your
network by connecting a laptop running
its own DHCP server. This isn’t quite as
calamitous as it sounds, since queries are
only sent out by newly connected hosts
or those which haven’t been able to
renew an existing lease. Your only protec-
tion is to run some kind of Intrusion
Detection Software such as Snort.

One particular possible security hole
arises with fixed IP address assignments
(as described in the Section called
Leases). If no MAC address has been
associated with the assignment then the
DHCP server has no way of verifying that
the requesting host has any right to the
hostname it specifies. So it is wise always
to specify a MAC address where practical.

Because of these issues, it isn’t wise to
have your servers configure their network
interfaces through DHCP. Leave that for
your workstations and configure your
servers manually. Otherwise, your entire
network will be vulnerable to attack.

The DHCP Server

In this article I will be using the server soft-
ware that is available from the Internet
Software Consortium, which is over-
whelmingly the most commonly used on
Linux. It should be available as one of your
distribution’s core packages or you can
download the source from the ISC website
[1]. On the website you will be able to find
source for versions 2.x and 3.x. Examples
given here will work with either.

Configuration

The DHCP server has one configuration
file, whose default location is /etc/
dhcpd.conf (you can specify a different
file at runtime by passing a parameter on
the command line). An example is shown
in the DHCP Server Config boxout. As
you can see, each line is terminated by a
semi-colon, sub-options are contained
within braces.

First come the global options. The lease
lifespan (measured in seconds) has here
been set to one day. There follow settings
for the local domain name and and DNS
servers. The subnet-mask global option
provides a default for any subnet which
does not have a netmask specified in its
own declaration.

DHCP Server Config

/etc/dhcpd.conf
1

Option definitions common to 2
all supported networks...

default-lease-time 86400;

max-lease-time 86400;

option domain-name 2

"example.org";

option domain-name-servers 2

192.168.10.1, 192,168.10.5;

option subnet-mask 255.255.255.0;

Options for each subnet
subnet 192.168.10.0 netmask 2
255.255.255.0 {

range 192.168.10.101 2

192.168.10.200;

option routers 192.168.10.1;
}

subnet 192.168.11.0 netmask 2
255.255.255.0 {
range 192.168.11.51 2
192.168.11.90;
range 192.168.11.200 2
192.168.11.254;
option routers 192.168.11.1;

subnet 192.168.12.0 netmask 2
255.255.255.0 {
}

Options for specific hosts 2
host marx {
hardware ethernet 2
00:08:20:81:77:82;
fixed-address 192.168.10.51;

host engels f{
fixed-address 192.168.10.52; 2
34}

Next we have some subnet declarations,
each giving specific options for a subnet
to which this machine is connected. The
first two declarations each allocate a
range of IP addresses to the pool for that
subnet and also give the router IP address.
The third subnet declaration is empty,
indicating that the server will not respond
to requests from that subnet.

Important: There must be a subnet
declaration for each subnet for which the

www.linux-magazine.com September 2002 n

host has a configured network interface,
unless the server was set at runtime to
only listen on specific interfaces (see the
Section called Running the Server). In the
latter case there must be a declaration for
each specified subnet.

Finally, some host declarations, which
specify fixed IP addresses for particular
hosts. The first declaration specifies a
MAC address and so will allocate the IP
address to any request coming from that
network card, whether or not the request
includes the “marx” hostname. Also in
contrast, the second declaration means
that 192.168.10.52 will be assigned to any
request including the “engels” hostname,
even if an existing lease has already been
granted to another machine using the
same name.

Caution — Any fixed IP addresses
assigned in host declarations must not be
from within ranges that have been
assigned to subnet pools.

Running the Server

You can launch the server directly from
the command line, as in this example:

/usr/sbin/dhcpd -cf /etc/dhcp/2
dhcpd.conf eth0 ethl

In this case the daemon has been told to
use an alternate configuration file and to
listen only on interfaces eth0 and ethl.

In practice, however, you are best to
stop and start the daemon by using the
init scripts provided with the package. On
Debian, for instance, you would restart
the daemon thus:

/etc/init.d/dhcp restart

If you wanted to pass extra parameters to
the daemon you would have to edit
/etc/default/dhcp. If you are using
another distribution, please consult your
distribution’s documentation for details.

The daemon must be restarted for any
changes to the configuration file to take
effect.

The Lease File

The DHCP server keeps a record of the
current leases in a text file (on Debian
this is /var/lib/dhcp/dhcp.leases, with a
backup called dhcp.leases—. The daemon
reloads it on start-up and will fail if it
can’t find it (which can happen if the
daemon fails at a crucial point). If this

Pump Config File

/etc/pump.conf

device eth0 {
nodns

script /usr/local/sbin/dhcp

happens, copy the backup file back to
dhcp.leases and restart the daemon.

Each record in the leases file records
the start and end date/time, MAC
address, hostname (if given) and IP
address. This can be of use either to other
applications or to your own scripts. One
example is given in the Section called
Dynamic DNS Updates.

Configuring the Client
For a Linux box to configure its network
interfaces using DHCP, it requires a DHCP
client. The two most commonly used are
pump, a simple client developed by Red
Hat, and dhclient, a fully featured client
from the Internet Software Consortium.
Both work in the same simple way:
when the client is run it sends out a series
of broadcast requests until a valid reply is
received. The client then configures the
network interface and other parameters
specified by the DHCP server, after which
it runs as a daemon in the background,
sending renewal requests as necessary.
Both of the clients can be configured
further to specify how they use the data
returned to them by the DHCP server and
to run a script on the granting or renewal
of a lease.

pump
pump doesn’t support the full range of
configuration options that can be passed
through DHCP and isn’t as flexible as
dhclient but is adequate for most set-ups.
It is the default DHCP client for many of
the distributions and there should be a
package available for you.

Once installed, configuring an interface
using pump can be as simple as this:

/sbin/pump -i ethO

Which will set pump to managing ethO.
As soon as it successfully obtains a lease
it will configure the interface.

You can modify pump’s behaviour by
passing it further command line options

n September 2002 www.linux-magazine.com

or by editing its configuration file,
/etc/pump.conf. The example file shown
in the Pump Config File boxout tells
pump not to rewrite /etc/resolv.conf if it
receives DNS configuration information
with the lease for ethO and to run the
user-written script /usr/local/sbin/dhcp
whenever a lease is granted, renewed or
released. The script is passed the action
('up’, ‘renewal’ or ‘down"), IP address
and interface name as parameters.

dhclient

Using dhclient to configure an interface is
just as simple as pump:

/sbin/dhclient eth0

You can also modify dhclient’s behaviour
by editing /etc/dhclient.conf, though in
most cases it will function perfectly well
without a configuration file. The options
for dhclient configuration are much more
complex and flexible than pump, as we
show in the dhclient Config File boxout.

The global options specify firstly that
dhclient should try to obtain a lease for
60 seconds before giving up and secondly
that it should wait a further 30 seconds
before trying again.

The interface declaration sets options
for dhclient to use when obtaining leases
for the ethO interface. In this case,
dhclient should identify the hostname as
“marx”, request an hour-long lease and
add 127.0.0.1 to the list of name servers it
receives from the server. The request
option specifies what information
dhclient should ask for and the require
option tells dhclient to reject entirely any
response which doesn’t include a subnet
mask and list of name servers.

It is possible to have dhclient run user-
defined scripts when either obtaining or
renewing leases but as this is a more
complex affair than with pump you
should read all the man pages that come
with the dhclient package before you
attempt this.

Your distribution will have a dhclient
package and you can also get the source
code from the ISC website (see the Info
boxoutat the end of this article).

Doing it the Easy Way

Thankfully, you rarely need to bother
with any of the above complexity, nor
with running the DHCP client yourself. In
all the major distributions you simply

dhclient Config File

/etc/dhclient.conf

timeout 60;
retry 30;

interface "eth0" {
send host-name "marx";
send dhcp-Tease-time 3600;
prepend domain-name-servers 2
127.0.0.1;
request subnet-mask, 2
broadcast-address, routers,?
domain-name, 2
domain-name-servers, host-name;
require subnet-mask, 2
domain-name-servers;

have to specify in the network config files
that an interface should use DHCP. When
the network interface is brought up (for
example using the ifup command), the
networking scripts will use whichever of
the clients is installed.

In the Example Interface Config Files
boxout you can see an example of how
this is done on Debian and Red Hat.

Dynamic DNS Updates

Historically, one drawback to configuring
network hosts dynamically has been that
their details are not stored in DNS. The
DNS standard now, however, includes a
mechanism for sending updates to a DNS
server. This makes it possible to update

Example Interface
Config Files
Debian config file:

/etc/network/interfaces

auto lo
iface 1o inet loopback

auto eth0
iface eth0 inet dhcp

Red Hat config file:

/etc/sysconfig/2
network-scripts/ifcfg-eth0

DEVICE=ethO
ONBOOT=yes
BOOTPROTO=dhcp

DHCP

BIND Configured
for Dynamic Updates

/etc/named.conf

options {
directory "/var/cache/bind";

zone "." |
type hint "/etc/bind/db.root";
file "/etc/bind/db.root";

zone "internal" {
type master;
file "db.internal";
allow-update {192.168.10.6;};

zone "0.0.127.in-addr.arpa" {
type master;
file "db.root";

zone "10.168.192.in-addr.arpa" {
type master;
file "db.10.168.192";
allow-update {192.168.10.6;};
bs

your DNS records to reflect the leases
given out by your DHCP server.

In configuring your network for DDNS
it is possible for the DHCP server and/or
the client to send the updates to the name
server and then to use secure keys for
protection. For simplicity’s sake, this
example allows only the server to send
updates and does not use security.

Configuring Bind

The first step is to configure your name
server to allow dynamic updates. For
BIND 8.x, this can be done as shown in
the BIND Configured for Dynamic
Updates boxout. In this case, the BIND
config file from the previous article in this
series has been modified to allow updates
to the main domain. The alteration is

simply the two allow-update directives,
which tell the respective forward and
reverse zones that they should accept
updates from 192.168.10.6 (the address of
the DHCP server).

Configuring DHCPD 3.x

If you want the DHCP server to do the
updates itself, you need version 3.x. You
should add the following options to
dhcpd.conf (altering the values to suit
your own network):

ddns-domainname?
"example.org";
ddns-update-style "interim";
deny client-updates;

zone example.org. f{
primary 192.168.10.1;

zone 254.10.168.192.1in-addr.2
arpa. {
primary 192.168.10.1;

The primary setting gives the IP address
of the name server to send the updates
to.

Working with DHCPD 2.x

If you have DHCPD 2.x then the DHCP
server itself cannot perform updates.
There are alternatives, however. Stephen
Carville has written some perl scripts
that can be used to monitor the
dhcpd.leases file and send updates using
the nsupdate binary from the BIND
package [2].

Endnotes

This article, the last in the series, has
shown you how to set up a DHCP server,
how to configure workstations using
DHCP and how to set up dynamic DNS
updates. The four articles should provide
you with all the information you need to
set up simple Linux networks. Hopefully,
they also provide enough tasters to make
you ambitious to try greater things with
your systems. (]

[1] 1SC DHCP tools: http://www.isc.org/products/DHCP/

[2] Stephen Carville’s DHCP-DNS: http://www.heronforge.net/~stephen/DHCP-DNS/dhcp-dns.html
[3] Secure DDNS HOWTO: http://ops.ietf.org/dns/dynupd/secure-ddns-howto.html

www.linux-magazine.com September 2002 n

