
would in a normal Perl script. In the
example below a function being declared:

Example 1
sub log_error {
print STDERR "Oops!\n";

}

This example will write the message
“Oops!” to wherever the standard error
file handle has been pointed. The
keyword 'sub' denotes that a function is
about to be declared, next comes the
name of the function, directly after is the
code block which is enclosed in the curly
braces. We will see later that there are
several other arguments that can be
passed. This form will now be sufficient
to make a practical error logging function.

Example 2
sub log_error {
my @call = caller(1);
print STDERR "Error: line U

$call [2]" . " of file $call U

[4]" . " in the function U

$call[3]\n";
}

In example 2 we use the Perl function
'caller' to give information on the calling
subroutine where the error occurred.
Caller returns an array of data pertaining
to where it was called. The most common
elements are listed below:

1. package
2. file-name
3. line number
4. subroutine / function

W
alter N

ovak,visipix.com

Items 2-4 should be familiar to you by
now, packages will be discussed in the
future. More information on the 'caller'
function can now be found by using the
'perldoc -f caller' command from the
shell prompt.

Invoking a user-defined
function
As with most (possibly all) things in Perl:
“There is more than one way of doing it”,
it follows then that there are numerous
ways of calling a user-defined function.

The three most common methods are
listed below. Each of these methods of
calling the user defined functions has its
own implicit characteristics.

Example 3
log_error if $error == 1;

Example 3 calls the function 'log_error',
provided that the function has been
declared beforehand.

#Example 4
my $error = 1;
log_error() if $error;

Example 4 calls the function, regardless
of where in the script the function was
declared. The parenthesis indicate that
the preceding word is a function. The
parenthesis are used to pass values to the
function, this is covered later.

Example 5
&log_error if $error;

Example 5 calls the function, regardless
of whether it was defined before the code
section or not, using & is similar to using
'$', '@' or '%', it clearly identifies the
label as a function. However there are
side-effects to using &, discussed later in
this article.

Parameters
Parameters make user-defined functions
very powerful and flexible. Arguments
can be passed to user-defined functions
in the same fashion as the predefined
functions of Perl.

Values are copied to a function using
parenthesis and the contents of the
parenthesis are passed using the default
array '@_'. This is the same variable that
can be used throughout the program,
however the value is stored elsewhere for

the duration of the function and its value
returned at the end of the script. This
concept is called scope and is explained
in more detail later.

Using parameters to provide values to a
function enables the function to exist as a
stand alone piece of code:

Example 6
my $error_message;
my $file = '/etc/passwd';

sub log_error {
my @call = caller(1);
print STDERR "Error at line U

$call[2] of file $call[1]" . U
"in the function $call[4]\n";

print STDERR $error_message if
defined($error_message);

}

if (-e $file) {
$error_message = "$file is U

executable";
log_error;

}

It seems comical to use this method,
what would happen if you forgot to reset
'$error_message', you'd give the wrong
error message which would be extremely
misleading putting you in the position of
debugging your debug code. Modifying
the previous example, we can give details
as to the cause of an error as parameters
to the argument:

Example 7
sub log_error {
my $error_message = shift;
my @call = caller(1);
print STDERR "Error at line U

$call[2] of file $call[1]" .
"in the function $call[4]\n";

print STDERR U

"$error_message\n" if
defined($error_message);

}

my $file = '/dev/thermic_lance';

unless (-e $file) {
log_error("$file doesn't U

exist");
}

If you were particularly lazy you could

then create the function to check for the
existence of a file:

Example 8
sub exist_file {
my $file = shift;
unless (-e $file) {
log_error("$file doesn't U

exist");
}
return 0;

}

This function in example 8 will call
another user defined function, the code
for which is shown previously. The code
will now give a standardized explanation
of the error that occurred, in a standard
format using another user function to
perform part of its task. The concept of
splitting work among several user defined
functions is called abstraction and has
many benefits. An obvious one is that if
you wanted to add a time-stamp then you
would only need to add the time stamp
code once and all existing calls to
'log_error' would reap the benefits.

Default Parameters
A function does not mind how many
parameters are passed to it by default. As
with standard arrays, if you try to access
an element that has no value, the value
returned will be 'undef'. It is possible to
make Perl strictly adhere to set function
arguments as we will see.

Example 9
sub error_log {
my $error_message = shift || U

'no message provided';
my @call = caller(1);
print STDERR "Error at line U

$call[2] of file $call[1]" . U
"in the function $call[4]\n";
print STDERR U

"$error_message\n";
}

In example 9 if a parameter is not passed,
then the default value reads 'no message
provided', so the area returned could be:

Error at line 20 of file U

script.pl in the function U

test no message provided

The '||' operator is usually seen in condi-
tional operators but in Perl it's equally at

5756 September 2002 www.linux-magazine.com www.linux-magazine.com September 2002

User defined functions are an
invaluable development tool
enabling sections of code to be

reused many times. Shrewd use of user
functions can create generic functions
that reduce repetition of code whilst
increasing legibility and maintainability.

Functions
A function is a collection of statements
that can be grouped together to perform a
single task. The function can contain
numerous calls to other perl functions or
user defined functions, including itself.
This allows functions to act as black-
boxes that can be used without the
knowledge of how it operates.
We declare a function by specifying its
name and listing the statements as we

Perl tutorialPROGRAMMING PROGRAMMINGPerl tutorial

In this month’ article we examine how to create user defined functions, test and apply the finished functions in several

separate scripts by creating libraries. BY FRANK FISH

Perl: Part 5

Thinking in Line Noise

Fictional Place, Some Town',
'jdoe!john doe,Flat 184A 23rdU
Street, Some City',
'!bad line', 'another bad U

line.'
);

for (@lines) {
my $index = '';

pass the line and a U

reference to index.
my $status = get_index($_,U
\$index);
print "The line '$_' has an U

index $index\n" if $status U

== 1;
}

Example 11 will find the indexes for an
array of items and return a status for each
line, this status can then be used to
decide if it is possible to continue with
the process.

It is worth noting that by default Perl
functions will return the value from the
last statement in a function. It is not
uncommon to see subroutines that don't
have 'return …' as the last line but rather
a variable, function or value by itself just
before the function declaration ends:
while it is only necessary to use a return
value to explicitly leave a subroutine
early it is good form to explicitly give a
'return' statement.

Example 12

sub get_index($$) {
my ($line, $index) = @_; U

my $status = 0;

if ($line =~ /^(\w+)!/ && $1 U

ne ''){
$$index = $1;

$status = 1;
} else {
log_error("No index.on line: U

$_\n");
}
$status;

}

Something greatly frowned upon in some
programming disciplines is having more
than one exit point to a function. Since
Perl acts as both a programming as well
as a scripting language the popular
interpretation of this rule is to bend it and

use the scripting ethos of “Exit early”.
Example 13, be;ow, is the “Exit Early”

programming style.

Example 13
sub circ_area {
my $radius = shift or return U

0;
my $PI = 2.14;
my $area = $PI * $radius * U

$radius;
return $area;

}

It is a foregone conclusion that a radius of
zero will produce an area of zero, so
rather than calculate this result as we did
before, we return the result immediately.
Since the rules of geometry are unlikely
to change in the working life of this code
(and perhaps even before Perl 6 is
released) such an action can hardly be
seen as cavalier.

We can return half-way through an
assignment due to two key features of
Perl. The 'or' operator has a greater
precedence than the assignment operator,
and more importantly Perl is a tolerant,
stoic and syntactically gifted language.

Scope
In example 6, we called a function and it
accessed a variable declared outside of
the function

We assigned a particular message to
the variable '$error_message' and this
was used in the function 'log_error'.

The variable we used is called a global
variable, that is to say its name can be
used anywhere and its value can be read
or written to from anywhere within the
program. The very fact that globals can
be altered from anywhere is the biggest
argument against using them, they lead
to messy un-maintainable code and are
considered a bad thing.

#Example 15 (Does not compile)
#!/usr/bin/perl
use strict;
use warnings;

my $global = 3;

sub functionX {
my $private = 4;

print "global is $global\n";
print "private is $private\n";

}

functionX;

print "global is $global\n";

This line will fail as
$private doesn't exist
outside of the function
called functionX.
print "private is $private\n";

Use of global variables is best avoided,
and should only be used to declare any
constant values that will remain for the
duration of the program. Better, even
then, to make use of the fact that
functions are always global, so no one
can revise the code and knock out a
global variable:

sub PI(){ 3.14 }

Even using functions to make constants it
is wise to pass the values as parameters
into the function, in case the function is
placed directly into another script, where
the constant has not been passed. Any
function that can stand alone, can be unit
tested, and its functionality vouched for.

My, Our and Local
There are three different ways to declare a
variable in Perl, each affecting different
aspects of the scope. As a rule 'my' is
always used, failure to use 'our' or 'local'
in the correct manner is considered an
unforgivable sin.

'my' is the safest variety to use, this
creates a variable and destroys it when it
is no longer referred to, using the Perl
garbage collection.

Any variable declared using 'my'
within a scope (a looping structure or
code block) exists only when that scope
is called and its value is then reset after
the iteration.

{
my $v = 1; # $v is 1;
print "$v\n" # $v is 1;

} # $v no longer exists.

This can be especially useful in nested
loops where the inner variable is each
time automatically initialized.

for my $x (0..9) {
my $y = 0;
print "Coordinate U

($x, $y)\n" while $y++ < 3;
}

'local' hi-jacks the value of a global
variable, for the duration of its scope.
This occurs at runtime rather than at
compile time and is referred to as
dynamic scope.

my $v = 5; {
local $v = 1; # $v is 1;
print "$v\n" # $v is 1;

} # $v is 5 again.

As a rule 'local' should be avoided in
preference to 'my'. It is primarily used to
alter global variables for short spaces of
time. Even then it is worth noting that
any function calls made within this scope
will also use the locally set value. If in
doubt consult 'perldoc -f local' but
remember 'my' is almost always what
you want.

'our' allows the use of a variable within
the lexical scope without initializing the
value. 'our' becomes useful when we
make packages, which we will investigate
in the future.

Function Oddities
It is possible to establish a required set
of values that the function must receive
or make it fail to compile and exit with a
runtime exception. This can be desirable
in some cases and allows greater
freedom in our use of user-defined
functions.

We can declare the prototypes at the
start of the code and then define the code
block later in the program, in case we
wish to use the extra features of prototyp-

5958 September 2002 www.linux-magazine.com www.linux-magazine.com September 2002

home in ordinary lines of code. It has a
low order of precedence.

Many Happy returns
All functions return a value. The value
that a function returns can be the results
of an operation or a status flag to show
success or failure of an operation.

The following example shows the
results of an operation:

Example 10

sub circ_area {
my $radius = shift || 0;
my $PI = 2.14;
my $area = $PI * $radius * U

$radius;
return $area;

}

my $radius = 3;
my $area = circ_area($radius);
print "Area of a circle U

$radius in radius is $area\n";

Will be interpreted as “Set $radius to the
value of the next element of the array
@_, if there are no more values set the
value to 'no message provided'.

The results of the user defined function
are returned directly, the essence of the
function is to return the data.

In large systems a function return value
is used to convey success or failure of the
function, this is extremely useful in tasks
that use many sections.

Example 11

sub get_index($$) {
my ($line, $index) = @_;
my $status = 0;

if ($line =~ /^(\w+)!/ && $1 U

ne ''){
$$index = $1;
$status = 1;

}
else {
log_error("No index on line: U

$_\n");
}

return $status;
}

my @lines = (
'fred!fred bloggs, 12 U

M-J. Dominus' excellent website:
perl.plover.com/FAQs/Namespaces.html
perl.plover.com/local.html

Online References

keyword value name

my scoped scoped

local scoped global

our global scoped

VARIABLES IN PERL

Perl tutorialPROGRAMMING PROGRAMMINGPerl tutorial

ing to increase legibility of the code or
force certain uses.

sub foo; # Forward declaration.U
sub foo(); # Prototype.

Using '&' does allow a programmer to
overrule any prototyping on a function. A
full description of prototyping with its
strengths and weaknesses (Perl is after all
a weakly typed language) will appear in
the future.

sub debugm($) {
print STDERR "\n\n****\n$_U
[0]\n***\n\n";

}

Automatically uses $_
debugm;

This only prints the first
parameter but ignores the
function prototype.
&debugm('beware','of this');

Perl Documentation
Perl has a wealth of good documentation
coming with the standard distribution, It
covers every aspect of the Perl language
and is viewed using your computer
system’s default pager program. The
pages of Perldoc resemble the man pages
in that they cite examples of use and give
pertinant advice.

There are a great many parts to the Perl
documentation. To list the categories
available, type the following command at
the shell prompt:

perldoc perl

This then displays a page which has two
columns. The left hand column lists the
mnemonic title while the right column
shows a description of the topic:

Perlsyn Perl syntax
Perldata Perl data structures
Perlop Perl operators and

precedence
Perlsub Perl subroutines

Simply type perldoc and the mnemonic
for that subject on the command line:

perldoc perlsyn

This shows the Perl syntax information.■
Perl docs: perldoc perlfunc

Further Reading

