
The Answer GirlLINUX USER

Is caps lock getting on your nerves? Still looking for a good way to put your Windows keys back to work? Along with other

definitive questions… BY PATRICIA JUNG

The Answer Girl

Keyboard Wizardry

In the world of everyday computing, even
under Linux, there are often surprises:Time
and again things do not work, or at least not
as they’re supposed to.The Answer Girl
shows how to deal elegantly with such little
problems.

The Answer Girl

An unused Windows key might be
regarded as a slight blemish, but the caps
lock key is a downright nuisance that will
no doubt cause you to inadvertently
SHOUT at your innocent computer from
time to time.

So why not put the loudmouth to
work? You might consider converting the
key to a second left shift key, as Caps
Lock is often hit by mistake instead of left
shift. Some users simply shift the caps
lock functions from the Caps Lock key to
the left control key. And you can also
consider an individual option – but let’s
first look at how you can accomplish that.

Unfortunately we are not looking at a
single solution because the two user
interfaces common to Linux, i.e. the char-
acter-based console and the X Window

GUI have separate methods of defining
keys. If you have previously been
required to install a Linux distribution
with foreign keyboard mappings or had
to add non-standard characters, you will
no doubt already have guessed that this
task involves tinkering with two different
sets of control levers.

Keyboard Assignments
without X
Most systems load a keyboard definition
file shortly after booting. So, if we can
find the corresponding command, that
should provide us with an answer to this
problem. There are at least three different
ways to do this:
• Feed your favourite search engine with

keywords such as keyboard, Linux,

Anew job, a new computer or just a
keyboard that bites the dust after
years of faithful service – this is a

situation that everyone has to face some
time – getting on top of a keyboard that
will surely be supplied with Windows
keys nowadays. Even if you swap the
Windows keys, that will not affect the
functionality, or lack of it, depending on
your distribution.

72 September 2002 www.linux-magazine.com

assignment and keytable.
• Search the boot scripts in the init.d

directory (normally /etc/rc.d/init.d or
/etc/init.d) for a command that should
include the word key.

• Search your whatis database for the
corresponding command.

The first option is a question of personal
preference. Whether the second option
will be successful or not depends on your
current distribution. Take SuSE 7.2 for
example, with its penchant for scripts so
complex that normal users have no idea
what to look for. You might try the follow-
ing command:

trish@linux:~ > grep keys /etc/U

init.d/*
[...]

/etc/init.d/kbd: rc_status && U

retmsg="`loadkeys $KEYMAP 2>&1`"
[...]

and quickly conclude that the
/etc/init.d/kbd file (that is “keyboard”) is
responsible for loading the keytable. But
if you just happen to look at this script
without really knowing what you are
looking for, you will probably feel slightly
lost. Depending on which you use,
Debian (/etc/init.d/keymap.sh), Red Hat
(/etc/init.d/keytable) or Caldera Open-
Linux (/etc/rc.d/init.d/keytable), the
search results should be far more clear
and indicate that the command loadkeys
is what you are looking for.

You can then search the whatis data-
base using the apropos command or type
the following:

trish@linux:~ > man -k keys
loadkeys (1) - load keyU

board translation tables

and view the corresponding man page to
confirm your suspicions. We find that this
is the console command for changing the
keyboard assignments, which are stored
in the so-called map files under
/usr/lib/kbd/keymaps (SuSE 7.2, Red
Hat), /usr/share/keymaps (Debian) or
/usr/share/kbd/keymaps (Caldera, SuSE
8.0). But don’t expect to find the map
files in this subdirectory – instead they
are nicely organized by the computer
architecture (i386, sun, mac etc.) and
keyboard layout (qwerty, azerty etc.).

The map files which are stored in these
subdirectories (i386/qwerty/uk.map.gz)
are gzipped text files that can be viewed
with the zless command (Listing 1 shows
an excerpt).

As you would expect, the # character at
the start of a line indicates a comment
that has no effect on the functionality.
The line reading include "qwerty-layout"
is interesting – instead of defining all
from scratch, you can include pre-defined
keymaps. Individual key assignments
include a so-called keycode on the left of
the equals sign, and up to four function
values on the right: for the key itself or in
combination with the Shift, AltGr and
Ctrl keys.

How to Stop Your Console
Shouting
As we already know the keycode for
caps lock (keycode 58) and so can
quickly redefine its function. To do so,
we create a file called personal.map, and
add an entry to assign the Shift function
to the key with the keycode 58, leaving

73www.linux-magazine.com September 2002

Shouting: Whether in email or IRC dialog,
most people intuitively view text passages
in CAPITALS as the visual counterpart of
shouting.
Keyboard Layout: This refers to the way the
keys are organized on the keyboard. If you
look at an English, Scandinavian, Polish, …
keyboard, you see that the top row of letters
begins with the keys [Q], [W], [E], [R], [T], and
[Y] (this layout is thus referred to as “qwerty”).
French keyboards have have the [A], [Z], [E],
[R], [T], and [Y] keys (“azerty”) in the top row
instead.

GLOSSARY

uk.map
[...]
include "qwerty-layout"
[...]
Normal Shift AltGr Ctrl
keycode 1 = Escape Escape
[...]
keycode 54 = Shift
keycode 56 = Alt
keycode 57 = space
keycode 58 = Caps_Lock
keycode 86 = backslash bar bar U

Control_backslash
keycode 97 = Control

Listing 1: Excerpt
from uk.map

trish@linux:~ > showkey
kb mode was XLATE

press any key (program terminates
10s after last keypress)...
keycode 28 release
[Right_Win_Key]
keycode 125 press
keycode 125 release
[Left_Win_Key]
keycode 126 press
keycode 126 release
[Menu Key]
keycode 127 press
keycode 127 release

Listing 2: Keycodes for
Windows Keys

the other assignments as defined in
uk.map:

include "/usr/share/kbd/keymapsU

/i386/qwerty/uk.map.gz"
keycode 58 = Shift

(You may need to change the path to
uk.map.gz on your machine.) We can
now test the new keyboard assignment
on the console by typing:

trish@linux:~ > loadkeys U

personal.map
Loading personal.map

As you can see, the keyboard mapping
seems to be working perfectly: Caps
lock now performs exactly like the Shift
key.

Making Use of those
Windows Keys
Before we can use the Windows keys on
the console, we need to find out their
keycodes. Luckily, the loadkeys man page
contains an example of the corresponding
command showkey in the LOAD KERNEL
KEYMAP section. If you now type...

trish@linux:~ > showkey
kb mode was RAW
[if you are trying this under U

X, it might not work
since the X server is also U

reading /dev/console]

KDSKBMODE: This operation is U

not permitted

LINUX USERThe Answer Girl

73www.linux-magazine.com September 2002

case: To translate the algorithm “If the con-
tent of variable 1 is 'start' or 'reload', do this,
and if the variable contains 'stop' do that”to
valid Bash syntax, you need the following:
case $1 in

start|reload) this
;;
stop) that
;;

esac
Standard Runlevel: The runlevel that a Linux
machine boots to by default is defined by the
number in the “id:5:initdefault:”line in
/etc/inittab. Runlevel 5, shown in our example,
is an operating mode that allows multiple
users to work simultaneously (multiuser
level), where an X Server is automatically
launched and networking is permitted.The
machine will shutdown in runlevel 0, and
reboot in runlevel 6. Runlevel 1, the single user
mode, is reserved for system maintenance –
where only basic services are launched and
only the user root can perform necessary
maintenance tasks. Any other runlevels differ
from distribution to distribution and may be
individually defined.
Link: Another name for an existing file.
Symbolic links can be created using the ln -s
file secondname syntax.

GLOSSARY

interface (although this option does not
make much sense for people that use the
GUI login as X is already running in this
case). The right Windows key could then
display the date and time and it might be
appropriate for the Menu key to display
the last 20 commands. You could then
choose a command number, add an
exclamation mark (possibly edit) and
then launch the command.

These are simple tasks that can be
launched from a prompt using the startx,
date and history 20 commands. The real
question is, how can you map all these
commands to the appropriate keys? Again
the loadkeys man page is a big help. The
section following LOAD KERNEL STRING
TABLE details how to assign symbols for

the non-existant function keys F100, F101,
and F102 to the corresponding keycodes:

keycode 127 = F102

You can now assign a string for this key,
for example:

string F102 = "history 20"

After loading the modified keymap, you
can simply hit the Menu key to write the
string history 20 in the command line.
Just press Enter to confirm, and launch
the command. We would prefer not to
have to hit the Enter key; in other words,
when we hit the Menu key, we want to
actually launch the command history 20.

The character that the Enter key writes
is an end of line. We could solve this
issue by including the character in our
string. Thinking about outputting text
strings to the command line brings the
echo command to mind, and we can use
\n (“newline”) to enter a new line:

trish@linux:~ > echo -e
U"foo\nbar"
foo
bar

... the command will not run inside an X
terminal: This shows that the keyboard
assignments for X are independent of the
console. If you try the same command on
the console, however (Listing 2), then the
keycode for the return key (28) will be
displayed before we can press any other
keys. showkey not only shows us the keys
we press, but also the keys we release.
After compiling the required codes, you
need to be patient: Pressing Ctrl-C or Ctrl-
D will not quit the program, you just have
to wait for 10 seconds.

Now it is simply a matter of giving the
keys with keycodes 125–127 something
useful to do. And why not have the left
Windows key do something similar to its
original job, i.e. launch the graphic user

The Answer GirlLINUX USER

74 September 2002 www.linux-magazine.com

Figure 1: Assigning keyboard shortcuts in KDE 2.1.2

Figure 2: Assigning actions to keyboard shortcuts in KDE 3.0

The plan seems to work fine! string F102
= "history 20\n" in the keymap (which
you will need to reload after editing using
loadkeys) means that:

trish@linux:~ > [Menu]
926 history 20

[...]
942 echo -e "foo\nbar"
943 vi personal.map
944 loadkeys personal.map

trish@linux:~ > !943

really does launch vi with the
personal.map file.

Reassigning Keys on Booting
Since keyboard mappings assigned via
loadkeys are retained after logging out,
you will want to define a single keymap
for all users of a system. It also makes
sense to load a modified version of a
tried and tested map that suits your
individual needs (use the examples in
Listing 3 for reference) when you boot
your machine. To this end root zips the
the individual personal.map using gzip
and stores it in the systems keymap
directory.

However, if you are using SuSE (up to
and including 7.3) and modify the
KEYTABLE entry in /etc/rc.config, then
the distributor has a surprise for you.
After performing standard mapping, SuSE
loads a few additional key assignments
including some for the Windows keys (as
you can ascertain by typing dumpkeys |
less).

As the SuSE init script, /etc/init.d/kbd,
is the only script that performs keyboard
assignments, we recommend entering the
loadkeys personal.map.gz command here.
Although this file is somewhat cryptic, it

75www.linux-magazine.com September 2002

LINUX USERThe Answer Girl

75www.linux-magazine.com September 2002

Our Code Map is based on
include "/usr/lib/kbd/keymaps/i386/qwerty/uk.map"
(this path refers to SuSE 7.2 and may need editing)

ReassignCapsLock to Shift
keycode 58 = Shift
Right Windows key launches X
(path for startx may need editing!)
keycode 125 = F100
string F100 = "/usr/X11R6/bin/startx\n"
Left Windows key outputs the date and time
keycode 126 = F101
string F101 = "date\n"
Context Menu Key outputs the last 20 commands
Shift or CapsLock and Menu Key outputs the current directory
content. Type q to quit.
keycode 127 = F102 F103
string F102 = "history 20\n"
string F103 = "ls -Al | less \n"

Listing 3: personal.map

Figure 3: Hotkeys for Actions in KDE 3 are defined
here

Figure 4: To modify an existing scheme, simply
keep the original name

Using xmodmap to approach the goal of a “generic”keyboard layout for X will certainly not appeal
to everyone. If you are lucky, you may find a program called xkeycaps pre-installed on your machine
that helps add some GUI to the grind. If not, you can download it from [1] or from the CD which
accompanies the subscription magazine, use tar -xzvf xkeycaps-2.46.tar.Z to unzip it and then cd
xkeycaps-2.46 to change to the directory containing the sources.

Since the archive offers neither a configure script, nor a makefile, but simply an Imakefile, you will
find the README file quite useful.You can use xmkmf to create a makefile from the latter, which you
can then compile using make.The make option -n (which incidentally has the same meaning in
xmodmap) does not mean what it says, so we do not need to use root privileges to check what
would happen if we installed the tool:

pjung@chekov:~/software/xkeycaps-2.46$ make -n install
if [-d /usr/X11R6/bin]; then set +x; \
else (set -x; mkdir -p /usr/X11R6/bin); fi
install -c -s xkeycaps /usr/X11R6/bin/xkeycaps
echo "install in . done"

If we really want to copy the new xkeycaps binary to the /usr/X11R6/bin directory (we can create, if
needed), root must issue the install command make install (and to additionally install the man page
make install.man).

Launching the program xkeycaps & in an X session displays a virtual keyboard (Figure 7) that can be
more closely specified using the “Select Keyboard”option.The miniature keyboard image in the Key-
boards column is provided for comparison.The standard US keyboard is best described by the entry
105 key, wide delete, tall Enter, and the appropriate layout is defined in the Layouts: column as
XFree86; US.You are then required to confirm your selection by clicking on ok, and the miniature
keyboard is then modified to match.

If you now right click on a key image, you can select Edit KeySyms of Key and then define the
required mapping interactively. It is useful to know that the middle key on your mouse can be used
for speed scrolling in the dialog box shown in Figure 8. An entry for KeySym 1 maps a single key;
KeySym 2 assumes that the Shift key is pressed simultaneously, and KeySym 3 refers to the [AltGr]
key.When selecting options you should be aware that you can only output the characters, if the
corresponding character sets are available: Characters from Character Set Latin 1 are safe enough,
but Cyrillic or Arabic characters may lead to weird substitutions.

When you have finished your configuration tasks, click on Write Output (Figure 7 upper left) to write
the complete layout or on (Changed Keys) to write just the reassigned key mappings to a file called
~/.xmodmap-machinename that you can call via xmodmap in your X initialization file.

Box 1: .Xmodmap by GUI

The Answer GirlLINUX USER

specific actions to keyboard shortcuts via
LookNFeel / Key Bindings (KDE 2.1.2, see
Figure 1) or Look & Feel / Shortcuts (KDE
3.0, see Figure 2).

It makes sense to use one of the pre-
defined schemes, preferably the one that
most closely complies with your way of
working. You then mark the action that
you want to assign to a hotkey (or the
keyboard shortcut). Then select Custom
(KDE 3.0) or Custom_Key (KDE 2.1.2) in
the lower frame of the dialog box Choose
a Key for the Shortcut Action.

KDE 2 does impose a few limits on
your creativity. If you are not satisfied
with a single key (click on the stylized
key button in Figure 1 and press the
desired key on your keyboard), you can
only use combinations with the Alt, Ctrl
and/or Shift keys.

Users who tend to hit the Menu key by
mistake will not want to assign the action
Dropdown Menu to the Menu key, as
shown in Figure 1, but can continue to
strain their fingers by typing Shift-Ctrl-
Alt-Menu to open the K Menu.

Now click on Save scheme... to assign a
name to the new configuration and avoid
modifying one of the existing schemes by
mistake. Now, click on the Apply button
to make your new keyboard mappings
available for use.

KDE 3 is somewhat more flexible. If
you click on one of the stylized keys in
the dialog box shown in Figure 2, a
slightly cryptic dialog box appears (Figure
3). If you intend to assign a single key for
the selected action, then remove the
checkmark in Multi Key, and you will
only be allowed to press a single key on
your keyboard (such as the Menu key for
example) to perform an action such as
Dropdown Menu).

If you are defining a combination of
keys, you must first select Multi Key and
then secondly put some thought into the
keys you intend to press in order to avoid
finger strain. You can use the Alternate

option to define a second hotkey for
the same action.

If you change the keyboard short-
cuts for a pre-defined scheme, you
will notice that KDE 3 immediately
activates and selects the New Scheme
option. To assign a name to the new
scheme, simply click on Save (Figure
2). However, you still have to take the
roundabout route via New Scheme
and the Save button, even if you want

does adhere to the syntax of a start stop
script, where a case construct defines the
action to perform when the script is
called using the start stop argument, or
something similar. In our case, we can
just ignore the mess and insert our load-
keys line before the ;;, that marks the end
of the start branch.

Other distributions, like Red Hat, are
easier on the system administrator and
offer a script named /etc/rc.d/rc.local
that is called right at the end of the boot
procedure after loading all other system
settings. The end of this file is the ideal
place to load an individual keymap.

And of course you can save an init
script of your own with the following
content:

76 September 2002 www.linux-magazine.com

Listing 4: Keyboard Mappings in XF86Config

Definition for a PC-Keyboard with 104 keys and British
layout.

XFree 3 # XFree 4
Section "Keyboard" Section "InputDevice"

Driver "keyboard"
Identifier "Keyboard[0]"

Protocol "Standard" Option "Protocol" "Standard"
XkbRules "xfree86" Option "XkbKeyCodes" "xfree86"
XkbModel "pc104" Option "XkbModel" "pc104"
XkbLayout "gb" Option "XkbLayout" "gb"
XkbVariant "nodeadkeys" Option "XkbVariant" "nodeadkeys"

EndSection EndSection

#!/bin/sh
loadkeys personal

(the suffix map.gz is normally optional
and some distributions require you to
omit it)in the appropriate init.d directory,
find the appropriate standard runlevel in
/etc/inittab and create a Link for it in the
appropriate rc?.d directory (i.e. rc2.d for
runlevel 2). The name of the link must
start with an S (for “start”) and a fairly
high number. Thus, a link called
S100keymap that points to the init script
will be called after any links starting with
S01 through S99.

Keyboard Mappings for KDE
No matter what settings you choose for

the console, they will
not affect they way
the keyboard reacts in
an X window session.
If you are simply
interested in the three
Windows keys, the
first place to look
would be the KDE
Control Centre that
allows you plenty of
leeway to assign your

Figure 5: KDE 3 intergrates the xmodmap output into the standard KDE
control panel

Figure 6: Move the Cursor into
the Black Square and hit a Key

to modify an existing scheme. In this case
you keep the original name in the Save
Key Scheme dialog box (Figure 4), instead
of supplying a new name, as you would
do to create a new scheme. Back in the
Control Center, simply click the Apply
button to apply the new or re-defined
scheme to KDE 3.

No Caps Lock in X
But all of these modification options will
not help you at all, if you use GNOME,
XFce or a Standalone Window Manager,
as these settings do not apply outside of

KDE. Additionally, you cannot re-define
the Caps Lock key using the methods we
discussed previously.

The solution to this problem is to
change the foundation, i.e. the X Window
system. The basic configuration file
XF86Config (normally to be found in the
/etc or /etc/X11 directories and sometimes
containing a 4 suffix in XFree 4) is the
place to look for the basic settings, such
as the keyboard type and the mappings.
The syntax for the entries in these files
differs between versions 3 and 4 of
XFree86 (Listing 4).

But like so many other global system
settings, the keyboard mappings set for
all X users are by no means a holy cow.
You can use:

trish@linux:~ > apropos key | U

grep -w X

xmodmap (1x) - utility for U

modifying keymaps and pointer U

button mappings in X
setxkbmap (1x) - set the U

keyboard using the X Keyboard U

Extension
CentnerCentner (1x) - U

graphically display and edit U

the X keyboard mapping

to discover an extremely interesting
entry: xmodmap is used in the defining of
individual keyboard layouts. (Refer to
Box 1 for details on xkeycaps). Typing
xmodmap in the command line shows
you the keys used as modifiers. You can
see the output from xmodmap in the
Shortcuts Modifier Keys tab under the X-
Modifier Mapping in the KDE 3 Control
Center (Figure 5). To (shift) between the
two basic settings (i.e. between capitals
and non-capitals in the case of letters),
you can use the left (Shift_L) and right
(Shift_R) Shift keys. The Caps lock key
locks the keyboard in the Shift position
(lock) and so on.

To counteract this effect we must now
remove Caps_Lock from the list of lock
modifiers. After referring to the xmodmap
man page, we try the following syntax:

xmodmap -e "remove lock = U

Caps_Lock"

And as you will see, Caps_Lock is now
missing in the output from xmodmap:

xmodmap: up to 3 keys per U

modifier, (keycodes in U

parentheses):
shift Shift_L (0x32), U

Shift_R (0x3e)
lock
[...]

77www.linux-magazine.com September 2002

LINUX USERThe Answer Girl

77www.linux-magazine.com September 2002

Figure 7: Using xkeycaps to create .Xmodmaps

Figure 8: You should restrict your keyboard mappings to displayable characters only

grep -w: This command searches the data
stream piped (|) to it, or a file supplied as an
argument, for the search key (In our example
X), provided it occurs as a single word.

GLOSSARY

following the equals sign appears to be
the name of the brace, bracket or paren-
theses (“brace” – curved brackets,
“bracket” – square brackets). This being
the case, the following syntax:

xmodmap -e "keycode 115 = U

braceleft bracketleft"
xmodmap -e "keycode 116 = U

braceright bracketright"

should help us achieve our goal.

Saving the Changes
Of course you could place all of these
xmodmap commands in your personal X
startup file ~/.xinitrc and/or
~/.xsession. But the syntax shown on the
xmodmap man page…

xmodmap [-options ...] U

[filename]

... suggests that you might like to place
your keyboard assignments in a single file

(Listing 6). The man page suggests
~/.xmodmaprc and distributions such as
SuSE take care of parsing .Xmodmap in
your home directory while starting X via
xmodmap. If you look at the man page,
you may note that comments are not indi-
cated by a hash sign #, but by an !.

You can now use an xmodmap
~/.Xmodmap entry in ~/xinitrc (if this
is not the default setting for your Linux
distribution) to take care of loading the
appropriate key maps on starting X with
startx. If you use a GUI login, you will
need to place this command in the
~/.xsession.

As a KDE user you will notice that the
Windows keys are no longer available for
KDE. They have been re-defined to out-
put braces and so it is not a good idea to
use them as hotkeys. ■

If we now add Caps_Lock to the shift list,
using xmodmap -e "add shift =
Caps_Lock", a quick test shows that we
have now tamed the beast, which acts
just like a Shift key in any application
running on the current X Server. A call to
xmodmap thus shows:

shift Shift_L (0x32), Shift_R U

(0x3e), Caps_Lock (0x42)

A New Home for Braces and
Brackets
Redefining the Windows keys means the
setting our sights a little lower than we
have previously seen in KDE. Opening
menus, changing virtual desktops and the
like belong to the Window Managers
realm. We can tell the X Server to output
braces with the Windows keys on our
keyboards in combination with the AltGr
key, whereas with Shift-Windows we can
produce left and right brackets.

To do this, we first need the keycodes
for the Windows keys. This is done using
the simple xev program (Figure 6)
referred to by the xmodmap man page,
provided you are not confused by the fact
that the program runs on an X Terminal
not only shows keypresses but mouse
events. Listing 5 shows sample output for
pressing (KeyPress event) and releasing
(KeyRelease event) the left Windows key
(keycode 115) and the equivalent key on
the right (keycode 116), if the mouse
focus does not move outside of the black
square in the xev window.

Now we only need the symbols for the
braces and parentheses. Since these are
already assigned to [AltGr-7] ({), [AltGr-
8] ([), [AltGr-9] (]) and [AltGr-0] (}), it
should be no problem to query xmodmap
for them. xmodmap -pke | less (-pke
stands for “print keymap expression”)
should do the trick:

keycode 16 = 7 ampersand U

braceleft seveneighths
keycode 17 = 8 asterisk U

bracketleft trademark
keycode 18 = 9 parenleft U

bracketright plusminus
keycode 19 = 0 parenright U

braceright degree

That looks a lot like the map file for the
console and shows you how to assign an
X task to a keycode. The third entry that

The Answer GirlLINUX USER

78 September 2002 www.linux-magazine.com

! Do not lock on pressing Caps_Lock
remove lock = Caps_Lock
! ... use Caps_Lock as an additional Shift key instead
add shift = Caps_Lock
! left Windows key = {, plus [Shift] = [
keycode 115 = braceleft bracketleft
! right Windows key = }, plus [Shift] =]
keycode 116 = braceright bracketright

Listing 6: Personal ~/.Xmodmap

[1] xkeycaps: http://www.jwz.org/xkeycaps/

INFO

KeyPress event, serial 28, synthetic NO, window 0xe00001,
root 0x2c, subw 0xe00002, time 1060529679, (30,37), root:(34,57),
state 0x0, keycode 115 (keysym 0xffe7, Meta_L), same_screen YES,
XLookupString gives 0 characters: ""

KeyRelease event, serial 28, synthetic NO, window 0xe00001,
root 0x2c, subw 0xe00002, time 1060529913, (30,37), root:(34,57),
state 0x40, keycode 115 (keysym 0xffe7, Meta_L), same_screen YES,
XLookupString gives 0 characters: ""

KeyPress event, serial 28, synthetic NO, window 0xe00001,
root 0x2c, subw 0xe00002, time 1060531499, (30,37), root:(34,57),
state 0x0, keycode 116 (keysym 0xff20, Multi_key), same_screen YES,
XLookupString gives 0 characters: ""

KeyRelease event, serial 28, synthetic NO, window 0xe00001,
root 0x2c, subw 0xe00002, time 1060531733, (30,37), root:(34,57),
state 0x0, keycode 116 (keysym 0xff20, Multi_key), same_screen YES,
XLookupString gives 0 characters: ""

Listing 5: xev Output of Windows Keys

