
After two and a half years of 
development, the Apache 
Software Foundation [1] finally

declared version 2.0.35 of the Apache
web server [2] “fit for public use” in
April [3]. When this issue went to print,
2.0.40 was the current version. But it
seems that many administrators are still
not prepared to risk updating. 

For those of you still wavering, 
this article will point out some of 
the advantages the new web server
offers, and those of you who have
decided to go for the new version will
certainly be interested in avoiding the
traps.

What’s new?
A whole bunch of new features in
Apache 2.0 immediately catch the eye:
• Build system: The Build system now

uses autoconf and libtool. The 
installation follows the usual pattern
after expanding the archive: 
./configure prefix=Prefix, without the
“prefix” option the target path is
“/usr/local/apache2”. This step is 
followed by “make” and “make
install”. 
You will need an ANSI C compiler,
such as GCC; Perl version 5.003 
or better is optional. You can either
include the modules you require in the
executable like in Apache 1.3 
(“--enable-module”) or load them as
Dynamic Shared Objects (“--enableU
module=shared”) at runtime. The new
Apache Extension Tool “apxs” is used
for creating DSOs.

• Configuration: The administrator 
modifies the “<Prefix>/conf/ httpd.U
conf” file to configure the program.
This file simplifies many of the
previously confusing configuration
instructions or removes them entirely,
as is the case for the “port” and
“BindAddress” instructions. 
Now, you only need the “listen”
instruction to set IP addresses and port
numbers. The server name and the
port number, used for redirection and

recognizing virtual servers, can be
configured using the “ServerName”
instruction sometime in future.

• IPv6: Apache will use IPv6 Listening
Sockets on systems where the portable
runtime library (see the section on
APRs) supports IPv6. Additionally, the
configuration instructions “Listen”,
“NameVirtualHost” and “VirtualHost”
can handle IPv6 addresses, for 
example “Listen [fe80::1]:8080”.

• Modules: Mod_ssl is now officially
part of the Apache package.
Mod_proxy has been mostly 
reprogrammed and several functions
have been placed in a number of
Mod_*cache modules. The Mod_deflate
compressor is new and may replace
Mod_gzip (see the article on page 26).

• Filters: Apache modules can now be
used to filter ingoing and outgoing
data streams. You can thus filter CGI

29www.linux-magazine.com October 2002

Whether they start now or in a few months, administrators will soon need to

think about making the jump from Apache Server 1.3 to version 2. This article

discusses important new features and provides decision making guidelines.

BY THOMAS GRAHAMMER

New and improved – Apache 2

Rules of Succession

COVER STORYApache 2
John C.H

.Grabill,w
w

w
.visipix.com



script output using the “INCLUDES”
filter contained in Mod_include, which
allows you to execute server side
includes.

• Multilingual: Apache stores error 
messages intended fro client browsers
in multilingual SSI documents. The
administrator can modify them to
reflect corporate design.

• Multi-protocol support: Apache 2.0
provides a platform capable of multi-
protocol support. (The documentation
for this feature is unfortunately
extremely thin and prevented us from
ascertaining the practical advantages
this feature may offer.)

Under the Hood: Yesterday
and Today
Apache supported only the Unix 
operating system up to version 1.2. In
contrast to Microsoft Windows, Unix
operating systems are capable of copying
processes (so called forking). Apache
thus ran as a preforking server: When
launched, the parent process creates a
number of instances of its own process –
as defined in the configuration file – and
these process listen for HTTP requests. 
If the number of requests exceeds the
number of processes available to receive
them, additional instances of the original
process are launched.

Apache version 1.3 was ported to 
Windows with a great deal of effort (and
to Netware 5 and IBMs Transaction 
Processing Facility). To do so, the 
developers had to completely re-write
the process engine. The so called thread
version of Apache 1.3 is required for
Windows, for Unix/Linux you can use
the process variant.

To facilitate porting Apache 2.0 the
developers abstracted the platform 
specific code segments from the 
remaining Apache code and placed it in
the APR and MPP sources (see below).
This kind of modularity also facilitates
platform specific optimization.

The Apache Portable
Runtime APR
Apache 2 no longer (directly) uses Posix
interfaces in contrast to previous Apache
versions. Poorly implemented or slow
Posix libraries or emulations meant that
the server did not perform well on non
Unix operating systems.

The Apache Portable Runtime (APR)
library introduced to replace Posix was
programmed by Apache to place an
abstraction layer between the operating
system and Apache 2. The API provided
by APR contains the basic functionality
of a virtual operating system, including
file and network I/O, memory 
management, as well as thread and
process management. By preference the
APR will always use native calls to the
operating system. Additionally, the APR
methods emulate the former Posix 
methods to facilitate porting older code
to APR.

The achieved goal of APR Version 1.0
was to provide those functions required

for Apache 2.0. There are plans to
develop APR independently of Apache as
a basis for platform independent 
program development and to make it
available to interested programmers.

Multiprocessing Modules
Apache 2 uses special modules to
abstract the code used to manage
processes in threads in Version 1.3. It is
these Multi Processing Modules’ (MPMs)
task to pass incoming HTTP requests to
simple execution units, which will in
turn process the request. The MPM in
use specifies whether to use either
processes or threads. This kind of
modularization provides for a clearly

30 October 2002 www.linux-magazine.com

Apache 2COVER STORY

Figure 1: Useful information on upgrading to 2.0

Figure 2: The Apache MPM site



structured Apache 2 source code and
offers several other advantages. The
Apache developers expressly allow
MPMs to use operating system specific
code. MPMs of this type can only be
used on one operating system, but their
performance will be far superior – and
this is particularly evident on non-Unix
operating systems. Bill Stoddard, an
Apache developer, achieved a 
performance boost of 50 percent for 
static websites on Windows.

MPMs on Unix
There are several MPMs available for
Unix. Each one of them has a different
approach to how the web server deals

with incoming HTTP requests. Web-
masters can therefore choose the variant
best suited to their applications by 
linking the MPM in to the Apache binary
(see also “Ready-Made MPMs in Apache
2.0”). Threads use fewer resources than
processes on Unix operating systems –
and on Linux. On the other hand, a
process based approach does provide
better stability, as a faulty thread can
bring down its parent process.

Update or Install from
Scratch?
Since there have been some serious
changes to the architecture of the
Apache web server, you will definitely

want to install from scratch [5], rather
than attempting an update. After trying
both approaches, I discovered that 
version 2.0 of the Apache attempts to re-
use the original 1.3 modules if you
perform an update. Due to changes in
the base technology 1.3 modules cannot
be used without some modifications.

You will also be unable to re-use the
configuration files – particularly
“httpd.conf” – as many configuration
instructions have been simplified or just
removed.

Is it Worth Changing?
Changing versions means a lot of work –
you will need to install your Apache
from scratch, including completely 
re-configuring all the settings. The 
standard version 1.3 modules are 
available in Apache 2.0 (see figure 1),
but existing third party modules will not
be available for the time being.

Administrators will have to decide for
themselves whether upgrading is worth-
while. If you really use the features we
just discussed, such as the Perchild
MPM, you should probably go for the
upgrade, despite the work involved. If
the features merely appeal to you, or if
you think they are a waste of time, you
might prefer to stick the old adage:
Never change a running Apache. ■

[1] Apache Software Foundation:
http://www.apache.org

[2] Apache Project: http://httpd.apache.org

[3] Release List: http://www.apacheweek.U
com/features/ap2#rh

[4] List of Apache 2 Modules:
http://httpd.apache.org/docs-2.0/mod

[5] Installation: http://httpd.apache.org/U
docs-2.0/install.html

INFO

31www.linux-magazine.com October 2002

COVER STORYApache 2

Thomas Grahammer
has a university
degree in Computer
Science and is in
charge of software
development at a
Munich based 
software company. He is also a 
freelance software developer, with 
in-depth knowledge of databases
and Apache, and holds professional
qualifications from SuSE and PHP

T
H

E
 A

U
T

H
O

R

Prefork (default for Unix platforms)

This MPM implements typical Apache 1.3 behavior in Apache 2.0. In this case, a parent process will
create a pool of child processes for the incoming HTTP requests.The options “MinSpareServers”
and “MaxSpareServers”are used to set the lower and upper limits for the child process pool.

If the number of free processes drops below the number defined in “MinSpareServers”, then new
processes are launched, if the number exceeds “MaxSpareServers”, Apache will remove processes
from memory. Since each process will handle only one request, an error in one process will drop
only one connection to the server.This is a great advantage if you work with dynamically 
generated pages.

Threaded

This MPM is similar to Prefork, the main difference being that every Apache 2 process can run
multiple threads.The configuration option “ThreadsPerChild”is used to specify how many. If
Threaded is used, the httpd keeps count of the number of unused threads remaining.

The “MinSpareThreads”and “MaxSpareThreads”directives stipulate the number of unused
threads that can occur before creating new processes or removing processes from memory.

This MPM thus uses multiple processes and threads – a genuine enhancement in comparison 
to Apache 1.3.

Dexter

The Dexter MPM also uses both processes and threads. In contrast to Threaded, the number of
processes is clearly defined, whereas the number of threads per process depends on the current
server load.The configuration statement“NumServers”specifies the number of processes to be
created on launching the web server, the number of threads is defined in “StartThreads”.
“MinSpareThreads”and “MaxSpareThreads”define how the number of threads will be adjusted
to reflect changing loads on the server.

Perchild

Perchild is based on the Dexter MPM, but adds an additional function that web hosters will
appreciate. Just like Dexter, Perchild also uses a set number of processes that spawn threads. In
order to run multiple virtual hosts with different privileges, Perchild assigns user and group IDs to
the processes.

The “ChildPerUserID”directive specifies how many processes will run under a specific user ID.

While the “AssignUserID”statement within the context of a “VirtualHost”assigns a user ID to a
specific process.

Modules for Other Operating Systems

There are additional MPMs for Windows, OS/2 and BeOS, which are automatically linked for the
respective platforms by the build system.

Ready-Made MPMs in Apache 2.0


