
These steps are done transparently,
that is the user will not notice anything –
apart from an obvious performance gain.
If a client that does not support HTTP
1.1, such as a search engine, a proxy, or
an old browser, sends a request, the data
will simply be transferred as it is.

Since a compressed HTML file is only
a fraction the size (20 to 30 percent) of
the original, transfer rates can be
improved considerably by compression
techniques. Figure 2 shows the through-
put of a 56 K modem, which can achieve

values of more than 30 kbyte/s for
compressed data.

Friends in need: Mod_gzip
Although it might seem obvious that
compression can cause an additional
load on the server, field tests have shown
that the opposite is in fact true. Due to
the fact that client requests do not take
up so much of the Httpd child processes’
time, system resources can be released
more quickly. This in turn allows more
requests to be processed. If the web

26 October 2002 www.linux-magazine.com

Despite a modern modem or ISDN
connection you sometimes feel
that a mere dribble of data is

getting through to you from the Web.
The reasons for slow page build up are
many and varied
• inadequate server hardware resources,
• slow transfer of data across the

Internet or
• a slow Internet connection on the part

of the end user.
A sysadmin can normally update the
server hardware with a minimal
investment, and there is certainly very
little one can do to remove the Internet
bottleneck. Thus the last-line issue (the
end user, or client, internet connection)
provides the greatest potential for
enhancing performance.

The majority of Internet users still do
not have access to a broadband
connection and are forced to resort to
modems or ISDN. This means that any
data will have to cross the telephone line
bottleneck, no matter how quickly they
are generated and served up. Figure 1
shows the download time for a 300 kbyte
HTML file using a 28k modem.

Content Encoding
Content encoding was introduced in
1999 as part of the HTTP 1.1 standard
and allows you to compress the content
to be transferred using the GZIP/ZLIB
compression algorithms. Common web
browsers (MS Internet Explorer version
4.0 or later, Netscape Navigator version
4.0 or later, Opera, Lynx, W3m) transfer
the “Accept-Encoding: gzip, …” string
during the HTTP handshake to inform
the server of the compression techniques
they support, if any. The server will then
compress any data it needs to transfer,
and the client will in turn decompress
the data and continue to process it.

HTML files compress quite well. Content encoding and compressed transfers allow vast improvements in the effective

transfer rate of a web server. The Mod_gzip module for Apache provides Linux based web admins with jet propulsion for

their favorite penguin. BY ULRICH KEIL

Dynamic Webpage Compression with Mod_gzip and Apache

Teaching Penguins to Fly

Mod_gzipCOVER STORY

COVER STORYMod_gzip

server is hosted by a provider that
charges you for traffic volume, you can
use content encoding to achieve
considerable traffic reductions, and thus
save a substantial amount of money.

The Mod_gzip module available under
the Apache license provides a complete
implementation of the content encoding
standard (RFC 2613) for Apache 1.3. The
module, which was developed by
Hyperspace Communications, which is
currently available as version 1.3.19.1a
and is part of the commercial
Hyperspace package.

The module is capable of compressing
both static and dynamically generated
content on the fly, and is used by
freshmeat.net, slashdot.org and web-
hostlist.de just to name a few. Although
it is possible to link Mod_gzip into
Apache, installing Mod_gzip as a DSO

module is probably a better alternative
since it saves you the time recompiling
Apache, and the entire installation
process can be completed in less than a
quarter of an hour.

Installation: Plug & Play
After downloading the sources from [1],
make sure you are superuser, root, and
type the following:

apxs -i -a -c mod_gzip.c

to compile and install the module. The
entries required to load Mod_gzip must
be placed in “httpd.conf”. But before you
can finally use the module, you must
insert the configuration directives from
Listing 3 into “httpd.conf”. All that
remains now, is to restart your Apache
by typing “apachectl restart”. Mod_gzip

is now ready and willing to deal with
user requests.

Just a note at this point: Although it is
theoretically possible to compress any
data transferred via HTTP, under normal
conditions it only makes sense to
compress ASCII files where a
considerable reduction in size can be
achieved (for example.html, .pl, .php,
.txt). Double compression of files such
as images will normally cause an
overhead that delays the data transfer.

More Speed?
For files that exceed the size defined in
“mod_gzip_maximum_inmem_size” (that
is, 64 kbytes by default), Mod_gzip will
create a file in the temp directory,
although this causes hard disk activity

Figure 1: Download time for a 300 kbyte HTML file using a 28k modem

100

90

80

70

60

50

40

30

20

10

0

Modem with
2:1 Compression

Modem with
4:1 Compression

Modem with
HTTP Compression

8
5

4
0

2
1

8
Seconds

Modem without
Compression

Figure 2: Compression improves the client data
throughput by several orders of magnitude. This
figure shows a 56k modem with a throughput of
more than 30 kbyte/s

#/bin/bash

Initialize the ramdisk
dd if=/dev/zero of=/dev/ram U

bs=1k count=4096
mke2fs -vm0 /dev/ram 4096
<\c>
Create a mountpoint
mkdir -p /var/cache/ramdisk
chown nobody.nobody /var/cacheU
/ramdisk
chmod 770 /var/cache/ramdisk

#Mount the ramdisk
mount -t ext2 /dev/ram /var/U
cache/ramdisk

Listing 1: “ramdisk.sh”

#!/bin/bash
ARGS=2
E_BADARGS=65
if [$# -ne $ARGS]
then

echo "Syntax: `basename $0` path suffix"
echo "Example: `basename $0` /home/httpd html"
exit $E_BADARGS

fi
for directory in `find $1 -type d`
do

for filename in $directory/*.$2
do

if [-f $filename]
then

gzip -c9 -v $filename >$filename.gz
fi

done
done

Listing 2: “compress.sh”

27www.linux-magazine.com October 2002

default, you may need to create a new
kernel, specifying the required size for
“Block Devices | Default RAM disk size”
in the configuration file.

After ensuring that a properly
dimensioned RAM disk is available, you
can use Listing 1 to initialize and mount
the disk. Now simply add

mod_gzip_temp_dir U

/var/cache/ramdisk

to “httpd.conf” – and after a restart

[1] Mod_gzip Homepage: http://www.remotecommunications.com/apache/mod_gzip

[2] Michael Schröpls Mod_gzip Page: http://www.schroepl.net/projekte/mod_gzip

[3] Content Encoding via Perl Scripts: http://www.schroepl.net/projekte/gzip_cnc

[4] Performance Test on the Hyperspace Homepage:
http://www.ehyperspace.com/ html/solutions/performance.html

INFO

28 October 2002 www.linux-magazine.com

and therefore wastes time. To increase
your Apache’s performance, you might
like to swap your temp directory out to a
RAM disk.

To do so, your kernel will need RAM
disk support. You can use the following
rule of thumb to calculate the size of the
disk: “Maximum number of simultane-
ous requests multiplied by 100 kbytes” –
this should allow you enough leeway to
process requests even at peak times.
However, since the kernel will only
support RAM disks of 4 mbytes by

Mod_gzipCOVER STORY

Listing 3: “httpd.conf”
All files <60 Kb can be
compressed in memory and need
not be transferred to the swap
directory
mod_gzip_maximum_inmem_size 60000

Files to be compressed?
HTML:
mod_gzip_item_include file \.htm$
mod_gzip_item_include file U

\.html$

Text:
mod_gzip_item_include mime text/.*

Scripts:
mod_gzip_item_include file \.pl$
mod_gzip_item_include file U

\.php$
mod_gzip_item_include handler U

^cgi-script$

And finally a logfile
LogFormat "%h %l %u %t \"%V U

%r\" %>s %b U
mod_gzip: %{mod_§§ gzip_result}n

In:%{mod_gzip_input_size}n U
Out:%{mod_gzip_output_size}n:%

{mod_gzip_compression_ratio}U
npct." common_with_mod_gzip_info2

CustomLog /var/log/httpd/mod_U
gzip common_with_mod_gzip_info

enable mod_gzip
mod_gzip_on Yes

Temp directory
(must be writable for Apache)
mod_gzip_temp_dir /tmp

Keep temporary files?
Set this to Yes for
debugging only
mod_gzip_keep_workfiles No

Exclude browsers whose
content encoding
implementation is faulty
mod_gzip_item_exclude reqheaderU
"User-agent: Mozilla/4.0[678]"

Exclude CSS and Javascript,
since Netscape 4 cannot
decompress these files
properly
mod_gzip_item_exclude file \.js$
mod_gzip_item_exclude file U

\.css$

Limit file size (in Bytes)
Compression causes an overhead
for files <0.5 kb
mod_gzip_minimum_file_size 500

File >1 MB compression causes
a delay in serving
mod_gzip_maximum_file_size U

1000000

Ulrich Keil studies
Computer Science in
Mannheim,
and works part-time
as a system
administrator for 9
Net Avenue. In his
leisure time Ulrich
works as a volunteer emergency
medical technician, and still finds
time to take care of his personal Sparc
station 10, that is still faithfully
serving up his homepage at
http://www.der-keiler.de.

T
H

E
 A

U
T

H
O

R

your Apache will save resources by
writing temporary files to memory.

Since a RAM disk is volatile and
disappears into the happy hunting
grounds when you restart your
computer, you might also like to add
Listing 2 to an init script. This script
needs to be run before you launch your
Apache to initialize the RAM disk
automatically on rebooting.

If you want your Apache to go faster
than the speed of light, note that
Mod_gzip allows you to serve up pre-
compressed files. This saves the dynamic
compression process, thus reducing the
interval between the request and the
return data by more than half.

If you add the following entry to
“httpd .conf”

mod_gzip_can_negotiate Yes

the web server will check for a pre-
compressed version of the file to be
served up (with the “.gz” suffix) and
return this to the client. If there is none,
the file is compressed on the fly and
returned. Listing 2 should help you
create a compressed version of any files
with a specific suffix (for example,
“.html” or “.txt”) in a specific directory
and its subdirectories.

If you require additional information
on Mod_gzip, you might like to visit
Michael Schröpl’s site [2]. Michael has
his own project [3] running – a content
encoding solution based entirely on
scripts, that will be of interest to readers
with FTP only access to their web servers
who are unable to install Mod_gzip
themselves. Anyone who would like to
feel the difference that compression can
make to a download should also try out
the Hyperspace website [4]. ■

