
Apache 1.3 or 2.0 machine, is far
superior to the methods mentioned so
far. The module uses regular expressions
to check the requested URL and, if
needed, one or two additional variables.
If a number of conditions apply, the
module replaces the URL with a new
one, although you can still access some
elements of the original address. In other
words mod_rewrite can either replace
entire URLs or simply re-write parts of
them.

This is why the author of this module,
Ralf S. Engelschall, calls it the “Swiss
Army Knife of URL Manipulation”. But
Brian Moore hits the nail on the head:
“Mod_rewrite is voodoo. Damned cool
voodoo, but still voodoo.” Mod_rewrite

is one of the most complex elements in
Apache – the control logic is not
particularly intuitive, and debugging is a
nightmare. So, there are good reasons for
not making it part of Apache’s standard
equipment – the maintainers simply do
not want to confuse newcomers.

Not Automatically Included
This does not mean that mod_rewrite is
not included with the web server, but the
“./configure” will not include the
module in “httpd” unless you explicitly
tell it to do so. Some Linux distributions
take this step for you. You might
therefore like to type “httpd -l” to
discover the modules already designated
for Apache.

22 October 2002 www.linux-magazine.com

If a browser or any other HTTP client
sends a request to a web server, the
most important element of the

request will always be a URL. The URL
uniquely identifies the required resource.
But a URL does not need to point to a file
on the server’s hard disk. This is
obviously the case where CGI scripts or
other dynamic pages are involved.

Apache will need to search for any file
not directly referenced. To do so, the
server needs to be told the path to the
“DocumentRoot” in the configuration
file “httpd.conf”. On the other hand,
directives such as “Alias”, “ScriptAlias”,
and “Redirect” can be used to redirect
the incoming requests. The mod_rewrite
module that is pre-installed on any

Static URLs pointing to static pages? No way! Apache can use the mod_rewrite module to automatically re-write

requested URLs. BY MARC ANDRÉ SELIG

Re-Writing URLs with the Apache mod_rewrite Module

Black Magic

Mod_rewriteCOVER STORY

N
ASA

If the output does not contain a
reference to “mod_rewrite.c”, you may
still find that the module was compiled
as a dynamic shared object (DSO). In
this case you will need to look for a file
called “mod_rewrite.so” in your Apache
module directory; you can type “locate
mod_rewrite.so” to do so. If you draw a
blank again, you will need to
re-compile Apache supplying the
“--enable-rewrite” “./configure” option.

The possibility of compiling the
module as a loadable DSO is probably
more interesting for Linux distributors
than for the webmaster of a production
site – the advantage being the fact that a
DSO is completely removed from the
webserver, if not used. The disadvantage
being the performance impact.

Configure that Server!
You can use the following syntax to
enable the DSO variant of the module:

LoadModule rewrite_module U

modules/mod_rewrite.so

in “httpd.conf”. Other options can be
placed in the server configuration file
“httpd.conf”, or in the directory specific
“.htaccess” configuration files. (Of
course, this only applies if you have not
already disabled parsing of “.htaccess”.)

The first important directive is
“RewriteEngine on”, which is used to
enable the module. If this is missing,
mod_rewrite will do nothing at all. For
troubleshooting activities, you are
recommended to log all the module’s
activity right from the outset. Use
“RewriteLog” to supply the logfile
required for this purpose.

If everything works, you will probably
want to disable logging later, by
commenting out the directives in Listing
1. Logging consumes valuable resources

and impacts webserver performance.
Your Apache will call “mod_rewrite”

when handling requests. The module
uses a set of rules (defined by
“RewriteRule” in “httpd.conf” or
“.htaccess”), each of which contains a
search pattern, a replacement string, and
possibly one or more flags. Additional
flags to the ones shown in Table 1 are
available for complex tasks. See [1] for a
comprehensive overview.

How Does it Work?
The web server compares the URL
requested by the client with the search
pattern in the individual rules.
For example:

RewriteRule ^/netscape\.html$ U

/mozilla.html

The first argument contains the search
pattern and the second the replacement
string; a third argument could contain
flags. When the “/netscape.html” URL is
requested, mod_rewrite instead returns
“/mozilla.html”. Since the search string
is a regular expression, the period it
contains needs to be protected by a
backslash to prevent it being interpreted
as a wildcard.

RewriteRule’s can be prepended in the
configuration file by one or multiple
“RewriteCond” directives comprising
comparitive variables, a search string
and possibly a flag. They are used to
provide additional conditions. The
replacement string defined in the
“RewriteRule” only applies if all the
rewrite conditions are fulfilled:

RewriteCond %{TIME_HOUR}%U
{TIME_MIN} <0600
RewriteRule ^/special/lunch\.U
html$ /it_U
is_too_early.html

This example concerns a request for a
lunchtime special. The variables

“TIME_HOUR” and “TIME_MIN” are
concatenated. A request entered at
quarter past eight in the evening would
thus produce the string “2015”. The
expression “<0600” is then applied to
the string.

If the comparison is successful, the
subsequent “RewriteRule” is applied.
Instead of the special, the content of the
file “/it_is_too_early.html” is returned to
the user. As this example shows, some
special conditions apply to regular
expressions in mod_rewrite – refer to
Table 2 for an overview.

In addition to the variables defined in
the CGI specificat mod_rewrite also
offers a few extra goodies that allow you
to query server information and the
time.

Table 3 shows the most commonly
used variables. Note that the order in
which mod_rewrite parses the search
keys contradicts the conventions
adhered to by most programming
languages. So “RewriteCond” always
prepends the corresponding “RewriteU
Rule”, but the server will still parse the
search string in “RewriteRule” first,
before going on to check the
conditions. In this case adhering to the
order stipulated in the configuration file.

Tidy Appearance
One typical application of mod_rewrite is
harmonizing URLs. You often find that
resources can be accessed via a variety
of addresses, but only one of them is the
official address. Uniform URLs are
particularly important for readability on
search machines. If a page can be
accessed via a variety of names, each
one of these will achieve fewer hits.

Your ranking drops and your page is
not so prominent on Google. However,
you will certainly not want to remove
alternative URLs to avoid impacting
availability to users. But there is a
solution to this issue: You can allow any
possible alternatives, but redirect any

23www.linux-magazine.com October 2002

COVER STORYMod_rewrite

LoadModule rewrite_module U

modules/mod_rewrite.so

RewriteEngine on

RewriteLog "/export/apache/U
logs/rewrite.log"
RewriteLogLevel 2

Listing 1: “httpd.conf”
entries for mod_rewrite

RewriteEngine on

RewriteRule ^/download\.html /download/ [NC,R=301]
RewriteRule ^/downloads\.html /download/ [NC,R=301]

RewriteRule ^/downloads/(.*) /download/$1 [NC,R=301]

Listing 2a: Harmonizing File Requests

The first “RewriteCond” compares the
“Host:” header contents with the regular
expression “^imode\.company\.com$”.
Thus, the rewrite is restricted to requests
directed to “imode.company.com”. The
“RewriteRule” itself simply takes the
entire request and saves the expression
that matches the string in parentheses in
a group. Now mod_rewrite can replace
the URL by “/i/” and the same group. If
a user wants to access the “mail.html”
page, for example, this would produce
the “/i/mail.html” address.

The second “RewriteCond” prevents
the system from entering an indefinite
loop. None of the conditions previously
checked is changed when the file path is
replaced. Mod_rewrite would thus

indefinitely prepend an “/i/” to the
request – until the user gave up. So the
second condition filters out any requests
that already contain an “/i/” thus
preventing the loop condition.

Using Dynamic Scripts to
Produce Static Pages
Many search engines seem to be allergic
to query strings. If you go to the trouble
of implementing a database based
template system in PHP, you may find
yourself dropping down the ranks on the
search engine. This is due to the fact that
the spider will notice the give-away
question mark in the URL and as a
precautionary measure, not create an
index for any subsequent pages.

24 October 2002 www.linux-magazine.com

users that type the unofficial URL to the
official address.

Listing 2a shows an example: The first
two rules redirect requests for
“download.html” and “downloads.html”
to the “/download/” directory. The
“[NC]” flag means “no case”, and refers
to upper/lower case letters. The
condition will thus equally apply to
“DownLoad.html”. “[R=301]” ensures
that the user or search engine will notice
they are being redirected, instead of per-
forming this transparently on the web
server. Browsers will immediately run
the redirection command, whereas a
robot or spider will immediately update
its records.

The third and final “RewriteRule”
points the content of “/downloads/”
(with an s at the end) to “/download/”
(without an s). The trick is, if there are
links pointing to files in “/downloads”,
the file name (possibly including
subdirectories) can be retained. The user
will immediately be pointed to the
requested file and will not need to climb
back up the tree from “/download/”.

Listing 2b is more complex: It
prepends “www.” to any requests. The
web server is configured to react to
“company.com” but, users should still
type “www.company.com”.

The first “RewriteCond” filters any
requests already containing “www.”, as
they do not need to be re-written. The
second blocks any requests without a
“Host:” header - some older clients may
still produce them, and redirection
would be fatal in this case. The
“RewriteRule” finally stores the path for
the current request and uses it to create a
new, official URL.

Virtual Hosts With a
Difference
Now let’s look at a more complex
practical task. Suppose a company that
runs the “company.com” domain,
creates the “imode.company.com”
subdomain for mobile phone fans. The
web content for this subdomain is stored
in the subdirectory “i” below the
“DocumentRoot”. The web server is
hosted externally – which prevents the
webmaster modifying “httpd.conf” to set
up an independent virtual server. The
only way to solve this issue is to use an
“.htaccess” file, as shown in Listing 3.

Mod_rewriteCOVER STORY

RewriteEngine on

RewriteCond %{HTTP_HOST} ^imode\.firma\.com$ [NC]
RewriteCond %{REQUEST_URI} !^/i/
RewriteRule ^(.*)$ /i/$1

Listing 3: Virtual Hosts with mod_rewrite

RewriteEngine on

RewriteRule ^/(animals|plants)/(.+)/(.+)\.html$ U
/template.php?menu=$1&submenu=$2&subsubmenu=$3 [PT]

[NC] Ignore upper/lower case for comparisons.
[OR] Links one “RewriteCond”to another using a logical OR. Normally, any existing conditions will need

to be fulfilled for a replacement to take place; this flag permits several variants.
[R=301] Performs external redirection. mod_rewrite is normally transpartent for the user.The status line in

the browser will show the URL the user originally typed, although this URL has in fact been re-writ
ten. However, if you want to draw the user’s attention to the redirection, you might prefer to use
external redirection.The browser will then receive an error code and the URL of the new page, and
will subsequently actively request this page.The error code to be returned to the browser is
defined by the number that follows “R=”.“301”(permanently moved) and “302”(temporary
redirection) are typical codes.

[L] Terminate mod_rewrite processing without applying any more rules.This flag prevents a correc
tion that has been performed from being overwritten by a later rule. It also saves the administrator
some confusion.

[N] This runs the newly defined URL through any applicable mod_rewrite rules.
[C] Only process the next“RewriteRule”if the current rule applied.

Table 1: Important flags for
“RewriteCond” and “RewriteRule”

RewriteCond %{HTTP_HOST} !^www\. [NC]
RewriteCond %{HTTP_HOST} !^$
RewriteRule ^(.*) http://www.%{HTTP_HOST}/$1 [R=301]

Listing 2b: Harmonizing Host Names

Listing 4: Static URLs instead of Query Strings
with mod_rewrite

Another case for mod_rewrite: Where
the template system would use a URL
something like “http://somewhere.com/
template.php?menu=animals&submenu
=fish&subsubmenu=shark”, the world
outside will be shown a nice static
URL, such as “http://somewhere.com/
animals/fish/shark.html”. Listing 4
shows the corresponding entry in
“httpd.conf”.

The search key comprises three
groups, the first of which must contain
either the string “animals” or the string
“plants”. This avoids impacting on any
other files or directories. Mod_rewrite
uses all three groups to construct an
internal URL, which is then called by the
PHP script.

The “[PT]” flag ensures that any
“Alias”, “Redirect”, and “ScriptAlias”
directives are applied to the result. Thus,
the example will not only work for PHP,
but for genuine CGI scripts written in
Perl or a similar language.

Future
What you have seen so far is just a taster
of what mod_rewrite can do: This
modules applications are as unbounded
as its complexity. Refer to [2] for a
collection of useful and useless examples
of practical applications. If you intend
to experiment with mod_rewrite, use
a lab system first. Mod_rewrite is
quick enough for production systems,
but unexpected configuration errors can
take a system down. ■

25www.linux-magazine.com October 2002

COVER STORYMod_rewrite

. Any character.

\. A period.

.+ One or more characters.

\.\+ A period and a plus sign.

.* No character or multiple characters.

.? No character or any single character.

^x “x”at the start of a URL or a file name.

x$ “x”at the end of a URL or a file name.

x|y Either “x”or “y”.

(.*) Group:The text matched by “.*”is stored in the “$1”variable in the case of a “RewriteRule”, or in the
variable “%1”if the regexp is used in a “RewriteCond”. If you use multiple groups in a single expres
sion, the variables “$2”,“$3”, … or “%2”,“%3”,… are used.These variables can be used in the replace
ment string.

(x|y) A different example of a group. Searches for “x”or “y”and stores the matching text.

[-0-9a-z]* Any number of lower case letters, figures or dashes.

[^/]* Any number of characters but not the slash character.

!regexp This expression is true if the regexp is not found.

Additionally, there are a number of special tests.The following operators do not search for regular expressions but compare
a string with another, or check for a file name or URL
.

<4500 The comparitive expression is less than 4500. Note:This is not a numeric but an ASCII comparison.

>4500 The comparitive expression is greater than 4500.

=““ The comparitive expression is an empty string.

-d The comparitive expression is points to a directory.

-f The comparitive expression is points to a normal file.

-s The comparitive expression is points to a normal file that is not empty.

-l The comparitive expression is points to a symbolic link.

-F The comparitive expression is points to a normal file that can be read by the current client.

-U The comparitive expression is points to a valid URL that can be read by the current client.

Table 2: Regular Expressions in mod_rewrite

%{HTTP_ACCEPT} Media types accepted by the client, for example “text/plain”or “audio/*”.

%{HTTP_COOKIE} Cookies set for the client.

%{HTTP_HOST} Domain name of the virtual host queried.

%{HTTP_REFERER} Page with a link to this page (can be omitted).

%{HTTP_USER_AGENT} Client, such as “Mozilla/4.0”.

%{QUERY_STRING} Query string transferred by a GET form.

%{REMOTE_ADDR} Client IP address.

%{REMOTE_HOST} Domain name of the client, if known.

%{REMOTE_USER} User name of the client, possibly after successfully completing authentication.

%{REQUEST_URI} The URI requested by the client.

%{REQUEST_FILENAME} The corresponding file on the local file system.

%{SERVER_ADDR} The web server IP address.

%{TIME_DAY} Current date, day.

%{TIME_MON} Current date, month.

%{TIME_YEAR} Current date, year.

%{TIME_HOUR} Current time, hour.

%{TIME_MIN} Current time, minute.

%{TIME_SEC} Current time, second.

%{ENV:PATH} “$PATH”environment variable for Apache.

%{HTTP:Connection} “Connection:”header in HTTP request.This allows you to query multiple headers.

Table 3: Interesting Variables
for “RewriteCond” Directives

Marc André Selig
spends half of his
time working as a
scientific assistant at
the University of Trier
and as an ongoing
medical doctor in the
Schramberg hospital.
If he happens to find time for it, his
currenty preoccupation is
programing web based databases on
various Unix platforms.

T
H

E
 A

U
T

H
O

R

[1] Original Documentation:
http://httpd.apache.org/docs-2.0/mod/U
mod_rewrite.html

[2] A Treasure Trove of Tips,Tricks and
Examples: http://httpd.apache.org/U
docs-2.0/misc/rewriteguide.html

INFO

