
64 October 2002 www.linux-magazine.com

The pre-processor is a small
preparation language that runs
before the main C compiler and

amends the given source by performing
tasks such as conditional compilation,
macro substitution and file inclusion. Its
integration with the C language is so
tight, that within the Linux environment
they’re no longer separate programs!
What follows will give details of the
available commands (known as
directives) and how they’re useful to C.

White Ladder
Any line that starts with a hash (#) is
intended for the pre-processor, including
our beloved #include that starts so much
of our code. Some people will use
whitespace between the hash and the
word include for indentation. Others will
use a space before the hash symbol to
indent. Either is acceptable under most
modern compilers, including GCC.

Pre-processor directives must appear as
the first thing on a line, but can be
anywhere within a file, even in the
middle of functions, but we place them at
the top of the file. This makes sure
everything in the file is affected, since the
position is important: a pre-processor
directive that appears half way down the
file will only have effect for the second
half of the file.

New Life
Include has been our friend since the
first instalment. It incorporates header
information into our source file, allowing
us access to common structures without

us re-inventing the proverbial wheel
each time. Since your fingers are
probably tired of typing ‘#include’ I shall
include only a minimum of examples!

When a file is included, the contents of
that file are incorporated into our source
verbatim – whether it’s genuine C code
or not. There are two variations, one of
which we haven’t covered yet.

#include <stdio.h>
#include "stdio.h"

In the first case, the pre-processor looks
for a file called stdio.h in the usual
places (/usr/include, /usr/local/include
and so on). No surprises there. However,
with the second example it will look in
the current, local, directory for a file of
that name. If no file is found then it will
not look anywhere else. This lets us
build up our own library of commonly
used routines and place them within our
own home directory, without needing
root priviledges to install them into
/usr/include.

You can use absolute or relative paths
within the file name. Relative paths are
interpreted from the file’s directory. If file
A includes file B in a different directory,
then any include in file B must be relative
to the directory in which B resides.
Absolute paths are rarely used because
porting becomes more awkward.

It is possible to include a file more than
once (and even include one header from
inside another) without a problem.
However, since anything inside the
header gets included twice, the compiler
will see two (or more) implementations
of certain structures and complain. To get
around this, all header files are guarded.
We’ll see how this works shortly.

ParkLife
Before we march on; two general
pre-processor features. The first of which

involves the use of comments: they are
ignored.

The pre-processor understands C style
comments, ignoring them completely as
the compiler would, and so will not be
interpreted in any directive (such as
include).

#include <stdio.h>
/* the pre-processor U

can't see me! */

The other feature is line continuation.
Although it is unlikely that you will ever
need to split the include instruction over
two lines, it is possible to do so by using
a backslash as the very last character on
a line (which include whitespace). This
will cause the pre-processor to rejoin
them internally.

#include \
<stdio.h>

Again, this is common, and works for all
pre-processor directives, not just include.

Mack the Knife
Macro substitution is performed with the
#define command. It can be used with or
without parameters. Like functions, if
parameters are used, then the same
number of parameters must be supplied
for the macro to be expanded properly.

#define TRUE 1
#define PI 3.1415926f
#define SQUARE(x) ((x) * (x))

In each case above, the pre-processor
works through the source code and
(blindly) replaces the macro name on
the left, with the macro text on the right.
It does nothing more complex than that!
By convention, names are always upper
case, which minimizes the chance of it
conflicting with a variable name or

In this article, Steven Goodwin takes us on a journey which results in us

breaking our project into pieces! BY STEVEN GOODWIN

C: Part 11

Language of the ‘C’

C TutorialPROGRAMMING

65www.linux-magazine.com October 2002

iBiggerNumber = BAD_SQUAREU
(i=iBigNumber); /* ERROR */

This example produces an ‘invalid lvalue
in assignment’ error, whereas a function
with the same name would work
without any problem. Generally, when a
macro is trying to look like a function it
should mimic a function as close as
possible. That means it must look like an
expression; no statements (if, while, for)
are allowed (since statements can not be
part of an expression), it must return a
value, and it must have no side affects. It
should never end with a semi colon
either, as you will also produce odd
syntax errors that are difficult to track
down!

Often, if there’s a problem with code
(either during compilation, or at run
time) within two lines of a macro, it’s
highly likely that it is malformed, and
correcting the macro (or better still,
using a function) will fix the problem.

So why use macros at all? Well,
functions require formal parameters.
Macros do not. And so it is unnecessary
to write (say) 5 different functions to
implement one algorithm. The
traditional examples at this juncture are
the macros for minimum and maximum.

#define MIN(x, y) U

(((x)<(y)) ? (x) : (y))
#define MAX(x, y) U

(((x)>(y)) ? (x) : (y))

Since this can work across types (the
minimum of a short and int, for
instance), it can save a great deal of
work as one simple macro does the
whole job.

It is possible to add comments to the
end of the definition, as they will not be
included as part of the macro.

Groovy Train
On occasion, you will want to define a
macro that can use its parameter as a
string, and not a value. The most
common case is listing variables during
debugging. To save typing lines like:

printf("iCount = %d\n", iCount);

The obvious solution (below) does not
work, however, since the text inside
quotes does not get replaced.

#define DBG(var) U

printf("var = %d\n", var);

And since the pre-processor will
substitute the value of ‘var’ into the
replacement string, this following
example will not work either. Sorry!

#define DBG(var) U

printf("%s = %d\n", var, var);

The solution is to use the macro’s name,
as opposed to the value of the macro
with the special “stringizing” operator,
which is done by prefixing the macro
name with the hash symbol.

#define DBG(var) U

printf("%s = %d\n", #var, var);

It Takes Two
The pre-processor appears to have a
fascination with the hash symbol, since
this final macro feature makes use of two
of them! It is called the token-pasting
operator, and will join the names of the
macro parameters into one.

#define PASTE(a,b) a##b
int g_Value = 10;
printf("Value = %d\n", U

PASTE(g_, Value));

Which would expand to:

printf("Value = %d\n", g_Value);

On the surface there might be little use
of this esoteric feature, but constructing
large structures with rigid naming
conventions can be made easier by using
token-pasting. It is, however, not for the
faint of heart!

Policy Of Truth
It is not possible to define a macro twice
with the same name as you will get a
warning. Actually, you get two warnings.
One saying ‘NAME’ redefined, and a
second telling you the location of the
previous definition. However, with
common macros such as TRUE and
FALSE (which could have been
implemented in any number of different
header files), this can be tricky. There
are two ways around this. The first is to
remove the definition before adding a
new one.

function (written, by convention, in
lower case). The macros do not get
expanded within quoted text, but will
work within expressions. That means
you can write:

iBiggerNumber = U

SQUARE(iBigNumber);

Which the pre-processor will expand to:

iBiggerNumber = U

((iBigNumber) * (iBigNumber));

This introduces a couple of interesting
(and so often quoted) problems with
macros that can quite easily break code.
Or rather, code can be written that can
quite easily break the macro! Consider
the following:

iBiggerNumber = U

SQUARE(iBigNumber++);

Since the ++ is inside the macro it too
will get substituted thus:

iBiggerNumber = U

((iBigNumber++) * U

(iBigNumber++));

This causes iBigNumber to grow by two
(something that was not expected) and
iBiggerNumber to be hopelessly wrong!

This is reason for the (apparently
excessive) brackets in the above example.
Thinking back to rules of precedence;
imagine a case where an operation with a
lower precedence than multiplication was
performed inside the macro.

#define BAD_SQUARE(x) x*x
iBiggerNumber = BAD_SQUARE(i+1);

This expands to:

iBiggerNumber = i+1*i+1;

Which evaluates to (check the
precedence table if you need to):

iBiggerNumber = i+(1*i)+1;

And will not produce the correct result
(unless ‘i’ just happens to be
0.4142135623731 or 2.414213562373!).
In some cases the code will cause a
compiling error.

PROGRAMMINGC Tutorial

66 October 2002 www.linux-magazine.com

#undef TRUE U

/* removes TRUE from the U

pre-processors memory */
#define TRUE 1

The second, often better, way is to check
for an existing definition. This is done
with the pre-processor instruction #ifdef.

When a macro is created, its name
goes into a table held inside the
pre-processor, along with its macro
replacement text. You can query
individual entries at any time by using
the instruction:

#ifdef TRUE U

/* TRUE has been #defined U

somewhere */
printf("TRUE has already been U

defined");
#endif

The first line of code starts a block of
code that will be compiled in, should the
appropriate condition be met.

This block starts from the line after the
#ifdef, and continues up to an
associated, #endif command. It can be
said that the block was conditionally
compiled in by TRUE.

#ifndef TRUE /* TRUE has not U

been #defined somewhere */
#define TRUE 1
#endif

This example will compile if the macro
had not been defined. This is usually
used for selecting build variations and
guarding against repeat definitions.

My Definition
The #ifdef directive can be used to
switch in (or out) special sections of
code depending on the build you are
doing. For instance, you might have lots

of debugging messages that appear
on-screen to help track the program; data
you wouldn’t want visible in the final
product. So, you could create a macro
and place #ifndef around that particular
code, like so.

#define RELEASE_BUILD
#ifndef RELEASE_BUILD

printf("Stats output...\n");
/* and so on... */

#endif

For more involved compilations we have
a straightforward #if command which
supports some basic operations. This
will perform some evaluation on macros
and support compound expressions. It
will not, however, work with strings –
only integers.

If you want to use strings, then do as
we do for DEBUG_LEVEL below – define
(and use them) as integer constants.
Basic mathematics can be performed
with #if, however only signed arithmetic
is supported.

#define DEBUG_LEVEL 3
#if DEBUG_LEVEL > 2

printf("Complete network U

log:\n");
#elif DEBUG_LEVEL > 1

printf("General stats:\n");
#elif DEBUG_LEVEL > 0

printf("Basic stats\n");
#endif

We can also make use of the ‘else if’
(#elif) instruction which is fairly fimilar
to C’s ‘else if’ statement, although we
could use #else since both are valid. The
expression part of a #if may also use a
special psuedo-function called ‘defined’,
which returns TRUE (i.e. 1) if the macro
in question has already been #defined by
the program.

#ifdef RELEASE_BUILD
#if defined(RELEASE_BUILD) U

/* both are exactly the same */

The latter is often used when several
conditions need to be tested, such as:

#if defined(RELEASE_BUILD) || U

!defined(DEBUG_NO_OUTPUT)

For other macros, see Table 1: Macros.

Buffalo Soldier
The other main use of #ifdef, guarding,
can happen in a number of places. In the
simple case above, we can guard against
the TRUE macro being declared more
than once with:

#ifndef TRUE
#define TRUE 1
#endif

Not an uncommon sight in header files
across the land! On a larger scale it can
also be used to stop header files from
being included more than once, as I
mentioned above.

These so called internal guards have
already been placed in the headers
within GCC. If you’ve ever wondered
why we don’t get problems when
compiling with any combination of
headers, this is it.

Every header file (and this applies to
all header files, not just the GCC ones)
should be guarded internally by using a
template such as:

C TutorialPROGRAMMING

__USE_GNU If you define this macro before including header files like

string.h you will have access to special GNU-specific extensions.

__USE_ISO9X Defining this macro gives access to functions that didn’t become

part of the standard C library until the ISO C 9x standard was ratified.

__DATE__ The following three macros are created automatically and are standard

across all compilers.This one contains the current date as a string.

__FILE__ The current file, as a string.

__LINE__ The current source line, as an integer

TABLE 1: MACROS

One compiler directive you may see is the
pragma.This allows the compiler writers to
include features and extensions that are not
part of the language, but may be useful (or
necessary) on the target platform. On some
platforms a pragma might exist to pad
structures to a specific size.The language
does not provide such a mechanism, but for
interfacing with specific hardware it might
be essential, and so is provided as a pragma.
#pragma pack(32) U

/* pack subsequent structures U

to 32 byte boundaries */
If the pre-processor and compiler (since the
compiler may need to do something with
the pragma information) can not interpret
what is meant by the pragma it is ignored,
to ensure portability. Generally, though, you
should not need it.

Pragma

67www.linux-magazine.com October 2002

different people to
patch). Our first task is
to modularise it. That is,
split it into sections that
perform a common set of
tasks. Common sense
and an understanding of
the problem are all that’s
necessary here. Looking
back to our converter code we can
determine several logical units. Each
module is then given its own file and an
associated header file.

The source file contains all the code to
fully implement that module, whilst the
header files (similar to our friends,
stdio.h and stdlib.h) act as a go-between
for the different pieces of code in our
program. Each header makes specific
functions and structures available to
code (in any source file) that wants to
make use of it. To use a particular
function, a source file need only include
this header, and it can use it as if it were
one of its own.

01 #ifndef _CONVERTER_H
02 #define _CONVERTER_H
03
04 #define MAX_CONVERSIONS 1024
05
06 typedef struct sCONVERTER {
07 char szFromUnits[32];
08 char szToUnits[32];
09 float fMultiplier;
10 float fAddition;
11 /**/
12 struct sCONVERTER *pNext;
13 } CONVERTER;
14
15 extern char *g_pAppname;
16
17 #endif

Lines 1, 2 &17 form an interior guard (as
we saw earlier), so anything between
lines 3-16 will only be included once.
Being a header file it can be included
anywhere, and features information
(defines, structures and external vari-
ables, in this case) that converter.c
doesn’t mind the outside world seeing.

All headers should be arranged in a
uniformed fashion; ‘macros, structures,
prototypes’ is a wise choice since
prototypes often use structures in their
definitions, and structures (in turn) often
include macros. Even if you don’t choose

this particular order, it is better to group
consistently since it makes the file
neater, and easier to read.

Line 15 re-introduces extern. This is
short for external, and can be used to
prefix either variables or functions and
means that the actual declaration for this
variable or function exists outside this
file. The variable g_pAppname is in
converter.c (the equivalent source file),
and is where the memory for the pointer
is created. If line 15 omitted the extern
storage class, we would be creating a
new variable every time we included the
header file, creating problems later on

#ifndef _STDIO_H
#define _STDIO_H

/* Usual header stuff U

goes in here */
#endif /* this is the last U

line of the file */

This stops the stdio.h header from
declaring its macros, structures and
function definitions more than once;
regardless of who types #include
<stdio.h> at the top of their file! It is
also possible to create an else branch
with #else, but it is not needed here.

Users of ‘other operating systems’
might try to influence you with easier
methods like ‘#pragma once’. Ignore
them! This pragma is non-standard,
non-portable, and highly unlikely to find
its way into gcc anytime soon, so stick
with the better method outlined here!
For the use and purpose of pragma
please see the Box: pragma.

It is also possible to guard externally,
by including the #ifndef lines around the
call to #include. In practice, this is
usually more trouble than it’s worth.

#ifndef _STDIO_H
#include <stdio.h>
#endif

This works in the same way as internal
guards (it still needs the #define
_STDIO_H inside the stdio.h file) and
naturally requires the names to match.
The rationale with this method is that by
guarding externally you save compile
time because you do not need to open
the file only to realise you do not need
anything inside it. The time saved,
however, is fairly small, especially under
GCC which is intelligent enough to be
aware of internal guards in a file, and
will not open a header that has already
been included.

So now we know to stop one file being
include twice – let’s split a project into
several files and test the theory!

Separate Lives
Let’s pretend the temperature conversion
project is to grow from a 50 line shell
utility to a fully-fledged interactive
application! This means we should split
it into several sections, making it easier
to work with (since the files and compile
times will be shorter, and it’s quicker for

PROGRAMMINGC Tutorial

Module Source File Header File
Core handling code (main) converter.c converter.h
Parsing the configuration file config.c config.h
Conversion Process process.c process.h
Displaying Results output.c output.h
Debug Output debug.c debug.h

Table 2: Modules

A word about putting code in header files –
don’t do it!!! Even with ‘#ifndef‘ around the
entire file.The problem comes not from the
compiler, but the linker.When compiling, gcc
will see a function (our example below uses
RandomNumber) once in each source file,
which is fine, since the compiler is only
working with one source file at a time.The
linker, however, is not. It will look at the
output from two or more object files (pre-
compiled source files) and try building them
into a single program, at which point it will
see two ‘RandomNumber’s, get confused,
and report“multiple definition of ‘Random-
Number’”in a file called ‘/tmp/ccMLu05R.o’
(or something equally baffling!).

The solution is to either define Random-
Number as a macro, or declare only the
prototype in the header, and provide the
implementation in a separate file that is
then linked in.The latter is usually the
better solution.

sillyheader.h
#ifndef _SILLYHEADER_H
#define _SILLYHEADER_H

int RandomNumber(int iMax)
{
return rand() / U

(RAND_MAX/ iMax + 1);
}
#endif

Code in Headers

68 October 2002 www.linux-magazine.com

C TutorialPROGRAMMING

(see Box: Code in headers). We can also
add externs (supported by functions and
variables) in source files as well,
enabling us access variables from other
files without including its header.

The Model
For converter.c to access the Usage func-
tion in output.c (for example), we also
use header files. But instead of including
the whole function prefixed with extern
(which will cause an error – see Box:
Code in headers) we need only to
include the prototype.

output.h (partial)
4 void Usage(void);

We first met prototypes in part one, but
have since encountered them in the
standard header files such as stdio.h. A
prototype tells the compiler that there is
going to be a function in the code, but it
has yet to appear in the source. This
gives the compiler enough information
to allow it to be used, pending the
implementation.

In our examples previously, we’ve
always declared the function before
using it. This cuts down on magazine
space and the need to write prototypes!
Now, however, as the functions appear
in different files it’s not possible to utilise
the ‘declare-before-use’ rule, and so we
must include a prototype. And that
prototype should live in the header file.

Because it is a prototype, the extern is
implicit, so there is no need to prefix it
with extern. Also, since all source files
include their associated header, we don’t
need to worry about the ‘declare-before-
use’ rules; the header comes first, so the
prototypes are always before use!

Private Investigations
By default, all functions are implicitly
externed. Any function can call any other
because the extern does not have to be
there for it to work. This is not always
desirable, as we might want to stop
direct access to our own internal
functions, so we use static and process.c!

static CONVERTER *GetConversionU
(const char *pFromUnit)

This means we are declaring a function,
GetConversion, but only want it to be

visible to other functions in this file. This
is the same static keyword we used as a
storage class. It is not much of a leap to
see the connection. So, even if we place
an extern in the header, the function will
not be visible outside process.c. Proto-
types for static functions are therefore
placed in the source file, not the header.

Finally, because a static function is not
visible outside the current file, it is
possible to create a different (static)
function, with the same name, in a
different file.

As a postscript I will state the obvious
– ultimately, having the source code to a
project means there’s nothing to stop
you removing ‘static’ from these func-
tions, and externing them to other files.

But if there are no methods (i.e.
functions) to give you access to this
private code, they are probably supposed
to be private, and things are likely to
break if you mess with them. So if there
isn’t a clean way of doing what you
want, you’re probably solving the wrong
problem and need a better solution!

GOD
Although we have not done it here, it is
permissible for a header to include
another, even recursively. When debug.c
needed functions from both converter.h
and process.h we had to include two
headers.

It would certainly have been possible
to re-write converter.h to include all the
other necessary header files, so each
source file would only need one include
line.

converter.h (variation)
#ifndef _CONVERTER_H
#define _CONVERTER_H

#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#include "debug.h"
#include "output.h"
#include "process.h"

#endif

debug.c (variation)
#include "converter.h"

void DbgShowConvTable(void)
{ ? etc? }

Like most things in coding, this has its
good and bad points. On the plus side,
it’s much quicker and easier to get the
project working, since you only need one
header file to include, making it less
likely you’ll forget something, or need to
revisit the file to add new headers as
functionality grows.

The downside is that it will take longer
to compile because every time a
header file changes, each source
file in the project (that includes that
header file) changes as a consequence.
Each source file has to combine 6, not 2,
headers.

Also it will take more effort to manage
the inter-dependancies of headers
(imagine if A must be before B, B before
C, and C before A). The latter can be
tricky if you are working with source
files in different directories, or moderate
to large sized projects.

I personally take a spoonful of wisdom
from each doctrine, grouping logical
sections of header files together (all file
handling units, for instance). Files in
that group can include the specific
headers they need, and those outside can
refer to all them at once.

The Land Of Make Believe
Now we have our separate modules, we
need a way to build them into one
project. We can compile with gcc by
including each source file as arguments:

gcc config.c debug.c U

output.c process.c converter.c U

-o convunit

That’s quite a buffer full to be typing
after each change. What we need is a
script to do this for us. But what would
be better is a script that would ‘know’
what files had changed, and only
compile those. That script is actually a
program. And its name is make. And
we’ll be looking at that next month! ■

The language of ‘C’has been brought
to you today by Steve Goodwin and
the pages 64–68. Steve is a lead
programmer, currently finishing off a
game for the Nintendo GameCube
console.When not working, he can
often be found relaxing at London
LONIX meetings.

T
H

E
 A

U
T

H
O

R

