
The solution to this issue is well
known: Use an encrypted point-
to-point connection to build a

tunnel through an insecure network. For
Linux there are a few popular tools
available to help you with this task, such
as Cipe and the freeware IPSec
implementation, FreeS/WAN, and of
course OpenVPN [1] the tool we will be
investigating in this issue.

Used: OpenSSL and TUN/TAP
The prerequisites for running OpenVPN
are the OpenSSL library and the
TUN/TAP driver. Any of the current
distribution should contain both – if not,
check out [2] and [3]. Just say the magic
words, ./configure; make; make install,
to unpack the tarball, which is slightly
over 200 KBytes.

To demonstrate the principle of
OpenVPN let’s open up an unencrypted
tunnel between two computers called
left and right. The IP addresses of the
ethernet interfaces are 1.2.3.4 for left and
4.3.2.1 for right.

We can now assign private IP
addresses to the endpoints of the tunnel
on both computers (/dev/tun0). So let’s
assign 10.0.0.1 to the endpoint on left
and 10.0.0.2 to the corresponding
endpoint on right. Before we get started,

we need to load the TUN driver.

modprobe tun

should do the trick. We will also need to
enable IP forwarding using the following
syntax:

echo 1 >/proc/sys/net/ipv4/U
ip_forward

We can now type the following
command for left

openvpn --remote right --dev U

tun0 --ifconfig 10.0.0.1 U

10.0.0.2

and a similar command for right

openvpn --remote left --dev U

tun0 --ifconfig 10.0.0.2 U

10.0.0.1

The tunnel is up and running.

Encrypting the tunnel
For test purposes we can simply ping the
IP addresses of the computers at the
opposite ends of the tunnel, i.e. we ping
10.0.0.2 on left and vice-versa. If this
simple test does exactly what we expect,
we can go on to encrypt the tunnel. The
simplest way of doing this is to agree on
a shared secret. To do so, we simply type

openvpn --genkey --secret key.

on one of the computers. This creates a
key file containing random data that still
needs to be copied securely to the
second computer – we can use scp for
this purpose.

Let’s start up the tunnel using the
following syntax for left:

openvpn --remote right --dev U

tun0 --ifconfig 10.0.0.1 U

10.0.0.2 --secret key

and the following syntax for right:

openvpn --remote left --dev U

tun0 --ifconfig 10.0.0.2 U

10.0.0.1 --secret key

All done! Of course, a shared secret is
not all that secure, if you are in a tight
corner. So I would not recommend using
this method for official secrets. If you
need to keep data secret, you might want
to opt for a TLS based approach –
OpenVPN offers you that possibility. ■

49www.linux-magazine.com October 2002

Being able to work anywhere in the world just as if you were attached to the

company’s LAN is an appealing prospect, but far too dangerous without taking

security measures. BY CHARLY KÜHNAST

The Sysadmin’s Daily Grind: OpenVPN

Secure Connections

SYSADMINCharly’s column

Charly Kühnast is a
Unix System
Manager at a public
datacenter in Moers,
near Germany’s
famous River Rhine.
His tasks include
ensuring firewall
security and availability and taking
care of the DMZ (demilitarized zone).
Although Charly started out on IBM
mainframes, he has been working
predominantly with Linux since 1995.

T
H

E
 A

U
T

H
O

R

[1] OpenVPN: http://openvpn.sourceforge.net

[2] OpenSSL: http://www.openssl.org

[3] TUN/TAP Drivers:
http://vtun.sourceforge.net/tun

INFO

OpenSSH Part I50

The first in our series on OpenSSH from
the Administrator’s perspective. The stan-
dard tool for providing encrypted remote
access.

MTRG ..56

The Multi Router Traffic Grapher’s
speciality is monitoring network traffic
and displaying the results as graphs.

SYSADMIN

