
Aweb server is a simple piece of
software when you think about
it. Reading any HTML file from

the file system and serving it up to the
browser is a task that a comptetent
programmer could probably handle with
a few hundred lines of code. But of
course a good web server like Apache
can do a whole lot more. And modules
are the source of most of the web
server’s intelligence.

The Apache web server has gone
through a similar evolution to the Linux
Kernel in this respect. It used to be
monolithic, but now more and more
functionality is provided by modules.
This is particularly evident in the new
Apache 2.0 version, although there are
still probably more modules available for
Apache 1.3 than the authors have had
hot dinners [1]. Having said that, a hand-
ful of practical modules can make a web
admin’s daily grind a whole lot easier.

MPM: Multiprocessing
Modules in Apache 2.0
Apache 2.0 sees the introduction of a
new group of modules: the server
delegates basic network and operating
system functionality to so-called multi-
processing modules (MPMs). The MPMs
in turn allow Apache to process multiple
requests simultaneously. The admin has
several options to choose from – but
changing options is simple if they are
modular. MPMs are discussed in detail in
the article on page 29.

Mod_speling: “Spel”checking
for URLs
Good web servers provide a structure
that allows users to access some content
directly via URLs. Sometimes users will
more or less know the URL, although
they are not sure about the case.
Mod_speling can help you solve this
issue. As you might have guessed from
the way the module misspells “spelling”,
this module corrects typos.

If there is a small typo in the URL a
web user provides, instead of issuing an

error message the user will be pointed to
the right page. The module will correct
up to one mistyped character and any
number of lower/upper case errors. This
will save most web users headaches or
yet another visit to Google. Take a look at
[2] for more information on mod_speling.

Mod_include: SSI – Server
Side Includes
When the first frame based web pages
were introduced, some webmasters
ironically suggested that their colleagues
possibly needed so many frames because
they had never heard of server side
includes (SSIs). And there is certainly a
modicum of truth in this statement: If
you want to use the same header, a
footer and a menu from the current
directory without frames, there is
nothing to prevent you using native tools
and ditching the frames, and the SSI
“include” element is the way to do this.

SSI instructions are directly embedded
in special tags in HTML documents.

“<!--#include virtual="File" -->” will
cause SSI to read the content of a file at
the tag position before the server serves
up the page.

Most standard distributions use an
Apache configuration that passes
“*.shtml” files to the SSI module
(“mod_include”). If this does not work
straight away, a quick look at your
“httpd.conf” may provide some clues.
You will need the following entry:

AddType text/html .shtml
AddHandler server-parsed .shtml

The “Options +Includes” in the
“<Directory>” section is used to enable
server side includes. SSI can also be used
recursively, as you can see from Listing 1
and 2. In line 11 Listing 1 integrates the
“/includes/footer.shtml” file. This file is
also parsed by the SSI module and will
output the current date in about line 4.

If you need to, you can use SSIs to run
commands on the web server and

19www.linux-magazine.com October 2002

There are literally hundreds of modules for the Apache web server. And that

makes it difficult to pick out the goodies, or even find the right software for

the job in hand. This is the starting point for a compact overview of the

authors’ favorite modules. BY STEFAN WINTERMEYER, RONALD KARSTENS

A Small Selection of Useful Apache Modules

Docking Station

COVER STORYApache Modules

fully-fledged scripting language with var-
ious database interfaces, there are no
limits to what you can do.

Installing PHP is quite complex, as you
need to enable a variety of add-ins and
options prior to this step. This applies
equally to dynamic libraries and PHP
modules, and to the question as to the
database interfaces you will need. We
recommend compiling PHP as a DSO
module (Dynamic Shared Object), as you
can then replace PHP without
re-installing your Apache.

Although the documentation still has
not caught up to Apache 2.0, the current
PHP versions seem to work well with the
new server. The following example of a
“configure” call uses MySQL as its
database backend:

$ CC=gcc CFLAGS=-O2 LDFLAGS=-s U

./configure U

--with-mysql=/opt/mysql U

--with-apxs2=/opt/apache/bin/U
apxs --prefix=/opt/apache U

--sysconfdir=/etc/php

Mod_perl: Embedding
Scripting Languages in HTML
We should not forget Perl while we are
discussing PHP. Dynamic websites in

Perl do not require any Apache modules,
as you can write CGI programs in Perl.
This variant does have its disadvantages,
as it means launching a Perl instance
every time the page is opened. A new
process is created, and the whole Perl
interpreter is loaded into virtual memory
where it can translate and run the CGI
program. Of course this works, but it is
slow and does not scale well.

One possible solution is to use an
Apache module. When you launch your
Apache, mod_perl loads a single
instance of Perl which stays active and
handles any requests for Perl programs.
This assumes that you included
mod_perl when compiling the web
server, or loaded the DSO module – and
this is no trivial task. Some CGI
programs also require you to perform
modifications, and you will not be able
to harness the full power of mod_perl
without adapting your scripts.

See [6] for a howto and some useful
tips. Warning: Apache 2.0 requires a
mod_perl version from the 2.0 series,
which is currently beta – this is one
reason why some production servers are
still hesitating before moving up to
Apache 2.0.

Mod_bandwidth: Less
Bandwidth is More
Most webmasters are familiar with this
dilemma: You have been asked to place a
video or an MP3 file by an up and
coming artist on your web server – but
without using up all your bandwidth.
You can use a bandwidth limiter to do
so. Most Linux distributions do not
provide a module for this task and to
make things worse there are several
different approaches. You can refer to
[7], using the “bandwidth” search key
for a list of available modules.

If you are experiencing general
bandwidth problems, you might like to

20 October 2002 www.linux-magazine.com

include the result. The following
instruction adds the output from “ls” to
a web page:

<!--#exec cmd="ls" -->

External commands can take so long to
execute that the page build up is either
extremely slow, or does not happen at all
(timout). But otherwise there is no real
reason to expect SSIs to cause
performance bottlenecks on large web
sites. It does not always make sense to
enable SSI for the “.html” and “.htm”
suffixes, but if you do, your web server
should handle the situation gracefully.

If users other than the webmaster can
create HTML files, “#exec” can open up a
large security hole, allowing normal
users to execute commands with the web
server’s privileges. You will need to
apply the “Option +IncludesNOEXEC”
configuration, to close the gap in this
scenario. SSIs will still be enabled, but
dangerous commands will not. For more
information and examples on SSIs see
[3] and [4].

Mod_php: Server Side
Scripting
If SSIs do not provide sufficient
functionality for you, you might like to
try PHP as a universal tool for dynamic
web pages. The server will first parse the
page at runtime and then serve up the
normal HTML files. Mod_php will
handle any files with the “*.php” suffix.

Listing 3 contains a Hello World
program in PHP. As you can see in line 3,
this module also uses special tags to
include commands in HTML files:
“<?php command ?>”. As PHP is a

Apache ModulesCOVER STORY

<!-- begin footer -->
<HR>
<!--#config timefmt="%A %B %d, %Y" -->
Today is <!--#echo var="DATE_LOCAL" -->

<!--#config timefmt="%D" -->
This file last modified <!--#echo var="LAST_MODIFIED" -->

<!-- end footer -->

<html>
<body>
<!--#include virtual="/includes/header.html" -->

<table><tr><td>
<!--#include virtual="menue.html" -->

</td><td>
hello world!

</td></tr></table>

<!--#include virtual="/includes/footer.shtml" -->
</body>

</html>

Listing 2: “footer.shtml”

Listing 1: Example of SSI

refer to the section on Traffic Shaper [9]
in the networking howto. But be careful
if you impose bandwidth restrictions,
just a slight error can severely impact
your web server’s performance.

Mod_mp3: Simple MP3
Streaming
With bandwidth restrictions and the
MP3 keyword, the obvious place to go
would be an MP3 server of your own.
And again Apache can offer you a
module for this task, allowing you to
provide a constant stream of music to
your MP3 clients, such as XMMS [10],
instead of simply allowing shared access
to audio files.

If you want to run your own radio
station on your intranet (with copyright-
free music, of course), you should
definitely take a look at mod_mp3
streaming [11]. Again, most distributions
do not include this module and you will
need to compile and include in your
Apache implementation.

The configuration steps are simple. In
Listing 4 the module is used to serve up
the MP3 files in “/home/export/mp3”,
and his two favorite songs (lines 7

through 9) at random (line 10) as
“Stefan’s Radio” (line 4).

Mod_auth_ldap: Using LDAP
for User Authentification
Most web sites have restricted areas
intended only for specific users. External
web servers can use the “mod_auth”
mechanism [12], to handle this require-
ment. The user credentials are stored in
a password file on the web server.

But the demand for single sign-on for
Intranet web servers continues to
increase, failing that you may be asked
to at least ensure that the same password
can be used for the whole range of
services on offer. Centralized password
management on a Novell, Microsoft, or
Open LDAP server [13] is quite common,
but there is no reason for Apache to hide
its light under a bushel. Mod_auth_ldap
[14] uses LDAP for user authentification.
Listing 5 shows a configuration example.

Mod_ssl: Serving Up Web
Pages with SSL and TLS
Encrypted communication is becoming
increasingly important and this
development is reflected by Apache.
Only a few months ago integrating
encrypting modules used to be a fairly
complicated and time-consuming task.
However, Apache 2.0 comes pre-
configured with mod_ssl [15]. Ensure

that you have the OpenSSL libraries
(which should be installed by default on
any current Linux distribution), and then
type “./configure --enable-ssl” to compile
Apache with SSL in place.

A production HTTPS server requires a
cryptographic certificate. Depending on
your target group, you may decide to
approach a commercial Certificate
Authority or set up your own CA. The
certificate and key files will then be
stored below the Apache configuration
directory and read on launching the
server after, possibly, prompting you for
a password. ■

[1] Overview of Apache Modules: http://modules.apache.org/
[2] Typo Correction: http://httpd.apache.org/docs/mod/mod_speling.html
[3] Server Side Includes: http://httpd.apache.org/docs/mod/mod_include.html
[4] SSI Howto: http://httpd.apache.org/docs/howto/ssi.html
[5] PHP Tutorial: http://www.php.net/manual/en/tutorial.php
[6] Mod_perl Download and Documentation: http://perl.apache.org/
[7] Search for Apache Modules: http://modules.apache.org/search
[8] Docs for mod_bandwidth: http://www.cohprog.com/v3/bandwidth/doc-en.html
[9] Info for Traffic Shaper: http://www.tldp.org/HOWTO/Net-HOWTO/x1416.html
[10]XMMS: http://www.xmms.org
[11] Mod_mp3: http://media.tangent.org/
[12] User Authentification: http://httpd.apache.org/docs/howto/auth.html
[13] OpenLDAP: http://www.openldap.org/
[14] Mod_auth_ldap Homepage:

http://www.muquit.com/muquit/software/mod_auth_ldap/mod_auth_ldap.html
[15] Introduction to SSL and TLS on Apache: http://httpd.apache.org/docs-2.0/ssl/
[16]Apache 2.0 Module Documentation: http://httpd.apache.org/docs-2.0/mod/
[17] Apache and Various Modules: http://www.apachetoolbox.com/

Info

21www.linux-magazine.com October 2002

COVER STORYApache Modules

<html>
<body>
<?php echo "Hello World<p>"; ?>
</body>
</html>

Listing 3:
“hello-world.php”

<VirtualHost mp3.example.com:U
8000>
ServerName mp3.example.com
MP3Engine On
MP3CastName "Stefan's Radio"
MP3Genre "European Trance"
MP3 /home/export/mp3
MP3 /tmp/favesong1.mp3
MP3 /tmp/favesong2.mp3
MP3Random On
#Increase this if your U

connections are timing out
Timeout 1200
ErrorLog /var/log/httpd/U

music-stream_error_log
</VirtualHost>

Listing 4:
MP3-Streaming-Server

<Directory "/usr/local/http/U
htdocs/a-team-doku">
Options Indexes FollowSymLinks
AllowOverride None
order allow,deny
allow from all
AuthName "A-Team only"
AuthType Basic
LDAP_Server ldap.example.com
LDAP_Port 389
Base_DN "o=A-Team HQ,c=DE"
#Bind_Pass "secret"
UID_Attr uid
require valid-user
</Directory>

Listing 5:
LDAP Authentification

